# Learning with Noisy Supervision, Part 5: Beyond Class-Conditional Noise

#### Gang Niu

#### Research Scientist Imperfect Information Learning Team RIKEN Center for Advanced Intelligence Project

IJCAI 2021 Tutorial August 20, 2021

| Motivation | IDN | MCD | Conclusions |
|------------|-----|-----|-------------|
|            |     |     |             |
|            |     |     |             |

# Outline



- 2 Instance-dependent noise (IDN)
- 3 Mutually contaminated distributions (MCD)

## 4 Conclusions

| Motivation | IDN | MCD | Conclusions |
|------------|-----|-----|-------------|
| •0000      |     |     |             |
|            |     |     |             |

# Class-conditional noise (CCN) model (conservation)

- All models are wrong, but some are useful (Box, "Science and Statistics", JASA 1976)
  - Following the law of total probability,  $p(\tilde{y} \mid x) = \sum_{y} p(\tilde{y} \mid x, y) p(y \mid x)$
  - Assume  $p(\tilde{y} \mid x, y) = p(\tilde{y} \mid y)$

i.e., the corruption  $y \to \tilde{y}$  is instance-independent and class-conditional

- Equivalently, using transition matrix T where  $[T]_{i,j} = p(\tilde{y} = j \mid y = i)$ 

| Motivation | IDN | MCD | Conclusions |
|------------|-----|-----|-------------|
| 0000       |     |     |             |
|            |     |     |             |

## Toy example: symmetric noise on Gaussian mixture



# Label noise is (almost) everywhere in industry

#### Active label collection Make Money **Get Results** by working on HITs Ask workers to complete HETs - Human Intelligence Tasks - and get results using Wechanical Turk. <u>Register New</u> Numan Intelligence Tasks - are individual tasks that work on, Find Hills now. As a Mechanical Turk Requester you As a Mechanical Turk Morker your ave access to a global, on-demand, 24 x 7 workfs at thousands of #ITs completed in minutes CROWPSOURCING VALUE CHAIN CROWP COMMUNITY CROWPSOURCERS (SOLVERS) (SEEKERS) MARKETPLACE (FACILITATOR)

In crowdsourcing, labels are from non-experts (Credit to Amazon Mechanical Turk and IBM Crowdsourcing and Crowdfunding)

#### Passive label collection



In search engine, labels are from users' clicks

(Credit to Google Images)

| Motivation | IDN | MCD | Conclusions |
|------------|-----|-----|-------------|
| 00000      |     |     |             |

#### Even test sets of most popular benchmarks!

#### Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks

| Curtis G. Northcutt* | Anish Athalye |
|----------------------|---------------|
| ChipBrain, MIT       | MIT           |

Jonas Mueller Amazon

Table 1: Test set errors are prominent across common benchmark datasets. Errors are estimated using confident learning (CL) and validated by human workers on Mechanical Turk.

| Deterat     | Madalita | Class      | Madal       |            | Test Set Er   | rors      |           |         |
|-------------|----------|------------|-------------|------------|---------------|-----------|-----------|---------|
| Dataset     | Modanty  | Size       | Model       | CL guessed | MTurk checked | validated | estimated | % error |
| MNIST       | image    | 10,000     | 2-conv CNN  | 100        | 100 (100%)    | 15        | -         | 0.15    |
| CIFAR-10    | image    | 10,000     | VGG         | 275        | 275 (100%)    | 54        | -         | 0.54    |
| CIFAR-100   | image    | 10,000     | VGG         | 2235       | 2235 (100%)   | 585       | -         | 5.85    |
| Caltech-256 | image    | 30,607     | ResNet-152  | 4,643      | 400 (8.6%)    | 65        | 754       | 2.46    |
| ImageNet    | image    | 50,000     | ResNet-50   | 5,440      | 5,440 (100%)  | 2,916     | -         | 5.83    |
| QuickDraw   | image    | 50,426,266 | VGG         | 6,825,383  | 2,500 (0.04%) | 1870      | 5,105,386 | 10.12   |
| 20news      | text     | 7,532      | TFIDF + SGD | 93         | 93 (100%)     | 82        | -         | 1.11    |
| IMDB        | text     | 25,000     | FastText    | 1,310      | 1,310 (100%)  | 725       | -         | 2.9     |
| Amazon      | text     | 9,996,437  | FastText    | 533,249    | 1,000 (0.2%)  | 732       | 390,338   | 3.9     |
| AudioSet    | audio    | 20,371     | VGG         | 307        | 307 (100%)    | 275       | -         | 1.35    |

\*Because the ImageNet test set labels are not publicly available, the ILSVRC 2012 validation set is used.

| Motivation      | IDN         | MCD      | Conclusions |
|-----------------|-------------|----------|-------------|
| 0000●           | 00000000000 | 00000000 | 0000        |
| Going beyond CO | CN          |          |             |

# However, CCN is not enough in expressing/modeling real-world label noise!

We need to go beyond it.

| Motivation | IDN         | MCD     | Conclusions |
|------------|-------------|---------|-------------|
| 00000      | •0000000000 | 0000000 | 0000        |

# Outline



2 Instance-dependent noise (IDN)

#### Mutually contaminated distributions (MCD)

#### Conclusions

# Mainstream approaches to DL under CCN

#### Loss correction

- Design a corrected loss function such that

minimize corrected loss on noisy data = minimize original loss on clean data

#### • Sample selection/reweighting

- Selection: select data likely with correct labels and train only on those data
- Reweighting: upweight/downweight data likely with correct/incorrect labels

#### Label correction

- Direct: correct the given labels using predicted labels
- Indirect: sample selection + semi-supervised learning

| Motivation | IDN        | MCD     | Conclusions |
|------------|------------|---------|-------------|
| 00000      | 0000000000 | 0000000 | 0000        |

#### Loss correction may fail under IDN

- CCN assumes  $p(\tilde{y} \mid x, y) = p(\tilde{y} \mid y)$ 
  - It holds that  $oldsymbol{p}_{\widetilde{y}|x}=T^{ op}oldsymbol{p}_{y|x}$  where T is a matrix independent of x
  - Possible to estimate T from data since all instances share the same T
- IDN does not assume  $p(\tilde{y} \mid x, y) = p(\tilde{y} \mid y)$ 
  - It becomes  $oldsymbol{p}_{\widetilde{y}|x} = T(x)^{\!\!\top} oldsymbol{p}_{y|x}$  where T is a matrix-valued function
  - Impossible to estimate T from data since each instance x has its T(x) i.e., IDN is mathematically unidentifiable, regardless of the size of data
  - Hence, without additional assumption/information, loss correction fails

## How about sample selection?

- Sample selection may also fail (Berthon+, ICML 2021; Zhu+, CVPR 2021)
  - The memorization effect is weakened-learn mislabeled data in low-noise regions first
  - Even if sample selection is perfect, a covariate shift exists between clean distributions



| Motivation | IDN        | MCD     | Conclusions |
|------------|------------|---------|-------------|
| 00000      | 0000000000 | 0000000 | 0000        |

## Wait a minute, can we approximate IDN?

- With additional assumption/information, we can obtain some approximations of IDN (list is not comprehensive)
  - Boundary consistent noise (for binary classification) (Menon+, MLJ 2018)
  - Bounded IDN (for binary classification) (Cheng+, ICML 2020)
  - Part-dependent noise (Xia+, NeurIPS 2020)
  - Difficulty-dependent noise (Wang+, AAAI 2021; Zhu+, CVPR 2021; Zhang+, arXiv 2021)
  - Confidence-scored IDN (Berthon+, ICML 2021)
- After we approximate IDN, we will perform loss correction

| Motivation | IDN        | MCD | Conclusions |
|------------|------------|-----|-------------|
|            | 0000000000 |     |             |
|            |            |     |             |

# Review of backward correction (BC) reconcision

- BC multiplies loss  $\ell$  by  $T^{-1}$  in backward pass
  - Key assumption: underlying transition matrix  ${\mathcal T}$  in CCN is invertible
- Derivation of backward correction

1. 
$$\mathbb{E}_{p(x,y)}[\ell(g(x),y)] = \mathbb{E}_{p(x)}\mathbb{E}_{p(y|x)}[\ell(g(x),y)] = \mathbb{E}_{p(x)}[\mathbf{p}_{y|x}^{\top}\ell_{y|g(x)}]$$
  
where  $\ell_{y|g(x)} = (\ell(g(x),1), \dots, \ell(g(x),c))$ 

2. Then, 
$$\boldsymbol{p}_{\boldsymbol{y}|\boldsymbol{x}}^{\top} \boldsymbol{\ell}_{\boldsymbol{y}|\boldsymbol{g}(\boldsymbol{x})} = (\boldsymbol{p}_{\boldsymbol{y}|\boldsymbol{x}}^{\top} T)(T^{-1} \boldsymbol{\ell}_{\boldsymbol{y}|\boldsymbol{g}(\boldsymbol{x})}) = \boldsymbol{p}_{\boldsymbol{y}|\boldsymbol{x}}^{\top}(T^{-1} \boldsymbol{\ell}_{\boldsymbol{y}|\boldsymbol{g}(\boldsymbol{x})})$$

3. 
$$\mathbb{E}_{p(x)}[p_{y|x}^{\top} \ell_{y|g(x)}] = \mathbb{E}_{p(x)}[p_{\tilde{y}|x}^{\top} \ell_{\tilde{y}|g(x)}^{b}]$$
 where  $\ell_{\tilde{y}|g(x)}^{b} = T^{-1} \ell_{y|g(x)}$ 

- 4. Let  $\ell^b(g(x), \tilde{y}) = [\ell^b_{\tilde{y}|g(x)}]_{\tilde{y}}$  be the (backward-)corrected loss so that  $\mathbb{E}_{p(x,y)}[\ell(g(x), y)] = \mathbb{E}_{p(x,\tilde{y})}[\ell^b(g(x), \tilde{y})]$
- BC reverses label corruption for any classifier & loss!

| Motivation | IDN        | MCD | Conclusions |
|------------|------------|-----|-------------|
|            | 0000000000 |     |             |
|            |            |     |             |

## Review of forward correction (FC) manual concerns

#### • FC multiplies classifier g by T in forward pass

- In BC, g is score &  $\ell$  is proper composite loss = inverse link + base loss
- In FC, g is score + inverse link = an estimated  $\hat{p}(y \mid x) \& \ell$  is base loss

#### Derivation of forward correction

- 1. For any target  $\boldsymbol{q}_{y|x}$  & big enough model h,  $\arg\min_{h} \mathbb{E}_{p(x)}[\boldsymbol{q}_{y|x}^{\top} \ell_{y|h(x)}] = \boldsymbol{q}_{y|x}$
- 2. Let  $\ell^f(g(x), \tilde{y}) = \ell(\mathcal{T}^{\top}g(x), \tilde{y})$  be the (forward-)corrected loss

denote by  $h(x) = T^{\top}g(x)$  as well as  $\ell^{f}_{\tilde{y}|g(x)} = \ell_{\tilde{y}|T^{\top}g(x)} = \ell_{\tilde{y}|h(x)}$ 

- 3. Then,  $\mathbf{T}^{\top} \arg\min_{g} \mathbb{E}_{p(x)}[\mathbf{p}_{\tilde{y}|x}^{\top} \boldsymbol{\ell}_{\tilde{y}|g(x)}^{f}] = \arg\min_{h} \mathbb{E}_{p(x)}[\mathbf{p}_{\tilde{y}|x}^{\top} \boldsymbol{\ell}_{\tilde{y}|h(x)}] = \mathbf{p}_{\tilde{y}|x}$
- 4. This implies  $\arg\min_{g} \mathbb{E}_{p(x)}[\boldsymbol{p}_{\tilde{y}|x}^{\top} \boldsymbol{\ell}_{\tilde{y}|g(x)}^{f}] = \boldsymbol{p}_{y|x} = \arg\min_{g} \mathbb{E}_{p(x)}[\boldsymbol{p}_{y|x}^{\top} \boldsymbol{\ell}_{y|g(x)}]$ i.e.,  $\arg\min_{g} \mathbb{E}_{p(x,\tilde{y})}[\ell^{f}(g(x),\tilde{y})] = \arg\min_{g} \mathbb{E}_{p(x,y)}[\ell(g(x),y)]$
- FC simulates label corruption for probabilistic classifier & loss!

| Motivation | IDN          | MCD     | Conclusions |
|------------|--------------|---------|-------------|
| 00000      | 0000000●0000 | 0000000 | 0000        |
|            |              |         |             |

## Part-dependent noise (PDN) (volume and volume and volum

#### • PDN is naturally motivated

- Humans perceive instances based on the parts, physiologically and psychologically
- More likely to annotate an instance based on its parts but not the whole instance
- A wrong mapping from parts to classes would cause PDN (a special case of IDN)

#### • 3 key assumptions of PDN

- Every instance can be decomposed into r parts (a convex combination of r parts)
- For every class, there are at least r anchor points
- For every x, T(x) is a convex combination of r matrices (with the same weights)







| Motivation | IDN         | MCD | Conclusions |
|------------|-------------|-----|-------------|
|            | 00000000000 |     |             |
|            |             |     |             |

# Effective learning under PDN (communication)

- 1. Learn the parts and the combination weights
  - 1.1. Estimate  $p(\tilde{y} \mid x)$  from noisy data, and extract latent representations of instances 1.2. Learn the parts and the combination weights by non-negative matrix factorization
- Estimate the rows of T(x) for anchor points
  When x is an anchor point for class i, we obtain that ∀j, [T(x)]<sub>i,j</sub> = p(ỹ = j | x)
- Recover T(x) for all training data (including non-anchor points)
  3.1. Estimate P<sup>1</sup>,..., P<sup>r</sup> given the weights and those rows of T(x) for anchor points
  3.2. Recover T(x) for every training instance x based on the weights and P<sup>1</sup>,..., P<sup>r</sup>





CSIDN ≥ boundary consistent noise + difficulty-dependent noise

- Binary boundary consistent noise: noise gets higher if p(y = 1 | x) is closer to 0.5

- Difficulty-dependent noise: x influences the noise magnitude but not its dynamics

 $p(\tilde{y} \mid \tilde{y} \neq y, x, y) = p(\tilde{y} \mid \tilde{y} \neq y, y) \iff [T(x)]_{i,j|j\neq i} = (1 - [T(x)]_{i,i})[E]_{i,j}$ where  $1 - [T(x)]_{i,i} = p(\tilde{y} \neq y \mid y = i, x)$  controls the magnitude of the noise and  $[E]_{i,j} = p(\tilde{y} = j \mid \tilde{y} \neq y, y = i)$  is CCN and controls the dynamics of the noise

- CSIDN assumes that the confidence information  $r_{x_i} = p(y = \tilde{y}_i | x_i, \tilde{y}_i)$  is available which can indicate both of the boundary information and the difficulty information

| Motivation | IDN         | MCD | Conclusions |
|------------|-------------|-----|-------------|
|            | 00000000000 |     |             |
|            |             |     |             |

## Instance-level forward correction (ILFC) (masses musical)

- ILFC minimizes  $\ell(T(x_i)^{\top}g(x_i), \tilde{y}_i)$  for each  $(x_i, \tilde{y}_i, r_i)$ 
  - Without loss of generality, assume that  $\ell$  is the cross-entropy loss
  - Hence, we need the  $\tilde{y}_i$ -th column of  $T(x_i)$  for computing the loss
- How to effectively estimate  $[T(x_i)]_{:,\tilde{y}_i}$ ?
  - 1. The matrix *E* is CCN and thus can be estimated from anchor points and  $\hat{p}(\tilde{y} \mid x)$
  - 2.  $[T(x_i)]_{\tilde{y}_i,\tilde{y}_i}$  can be estimated as  $r_i \hat{\rho}(\tilde{y} = \tilde{y}_i \mid x_i) / \hat{\rho}(y = \tilde{y}_i \mid x_i)$  in an iterative way
  - 3. Note that for  $j \neq \tilde{y}_i$ ,  $r_i = p(y = \tilde{y}_i | x_i, \tilde{y}_i)$  is uninformative to estimate  $[T(x_i)]_{j,j}$ We heuristically set  $[\hat{T}(x_i)]_{i,j}$  as the empirical average of  $[\hat{T}(x_k)]_{j,j}$  where  $\tilde{y}_k = j$
  - 4. Finally,  $[T(x_i)]_{j,\tilde{y}_i|j\neq\tilde{y}_i}$  can be estimated as  $(1 [\hat{T}(x_i)]_{j,j})[\hat{E}]_{j,\tilde{y}_i}$



| 000000000000000000000000000000000000000 | Motivation | IDN        | MCD     | Conclusions |
|-----------------------------------------|------------|------------|---------|-------------|
|                                         | 00000      | 0000000000 | 0000000 | 0000        |

# A summary of IDN settings and methods

- IDN strictly generalizes CCN
  - Transition matrix  $T \Longrightarrow$  Matrix-valued function T(x)
- IDN is notably more challenging than CCN
  - The memorization effect acts differently in regions with different T(x)
  - T(x) is not identifiable unless we (roughly or nicely) approximate IDN
  - Rely on part-dependent noise if we can decompose our data into parts
  - Rely on confidence-scored IDN if we collected or can assign the scores
  - Otherwise, try boundary consistent noise or difficulty-dependent noise

| Motivation | IDN        | MCD     | Conclusions |
|------------|------------|---------|-------------|
| 00000      | 0000000000 | •000000 | 0000        |

# Outline



Instance-dependent noise (IDN)

#### 3 Mutually contaminated distributions (MCD)

#### 4 Conclusions



# When $p(x \mid y)$ instead of $p(y \mid x)$ is corrupted sourcements





Clean N component

Noisy N mixture (0.4P+0.6N)

Is it still a problem of noisy supervision? Yes! Does it belong to CCN or IDN? No...

| Motivation | IDN         | MCD      | Conclusions |
|------------|-------------|----------|-------------|
| 00000      | 00000000000 | 00●00000 | 0000        |
|            |             |          |             |

# MCD also (strictly) generalizes CCN measurements

• In common:  $\{(x_1, \tilde{y}_1), \dots, (x_n, \tilde{y}_n)\}$  drawn from  $p(x, \tilde{y})$ 

• CCN corrupts class-posterior probability:  $\boldsymbol{p}_{\tilde{y}|x} = \mathcal{T}^{\top} \boldsymbol{p}_{y|x}$ 

- T is a label transition matrix such that  $[T]_{i,j} = p(\tilde{y} = j \mid y = i)$
- It is a label-noise model for the corruption of the labeling process
- p(x) remains the same so that the memorization effect is reliable
- $p(\tilde{y})$  is determined once  $p(\tilde{y} \mid x)$  or T is fixed
- MCD corrupts class-conditional density:  $\boldsymbol{p}_{x|\tilde{y}} = S \boldsymbol{p}_{x|y}$ 
  - S is a mixture proportion matrix such that  $[S]_{i,j} = p(y = j \mid \tilde{y} = i)$
  - It is a "label-noise" model for the corruption of the sampling process It is often not viewed as label noise, since instances are also "wrong"
  - $p(\tilde{y})$  is totally free after  $p(x \mid \tilde{y})$  or S is fixed
  - Depending on  $p(\tilde{y})$ , p(x) may notably change (with probability one) The only chance of the same p(x) is when MCD is reduced to CCN Thus, just the memorization effect can be practically very unreliable

| Motivation | IDN        | MCD     | Conclusions |
|------------|------------|---------|-------------|
| 00000      | 0000000000 | 0000000 | 0000        |

## Backward correction for MCD: an overview

- We are going to rewrite the risk  $R(g) = \mathbb{E}_{p(x,y)}[\ell(g(x), y)]$
- Specifically, R(g) could be decomposed into c partial risks
- We create a loss  $\ell^b$ , such that  $\mathbb{E}_{p(x,\tilde{y})}[\ell^b(g(x),\tilde{y})] = R(g)$
- It could be achieved by solving a set of  $c^2$  linear equations
- The solution is simple:  $\ell^b(\cdot,j) = \sum_{k=1}^{c} \frac{[S^{-1}]_{k,j}p(y=k)}{p(\tilde{y}=j)}\ell(\cdot,k)$

| Motivation | IDN         | MCD      | Conclusions |  |  |  |  |
|------------|-------------|----------|-------------|--|--|--|--|
| 00000      | 00000000000 | 0000●000 | 0000        |  |  |  |  |
|            |             |          |             |  |  |  |  |

KISK decomposition (on Regener, MLR 2018, Los, ICLR 2018)

• Key idea: Work directly on class-wise risks

- For CCN, we make use of  $R(g) = \mathbb{E}_{p(x,y)}[\ell(g(x),y)] = \mathbb{E}_{p(x)}\mathbb{E}_{p(y|x)}[\ell(g(x),y)]$ 

- For MCD,  $p(x \mid y)$  gets corrupted, based on which we should write down R(g)

• For 
$$j = 1, \ldots, c$$
, denote by

-  $\pi_j = p(y = j)$  the clean class-prior probability of the *j*-th class

- $\tilde{\pi}_j = p(\tilde{y} = j)$  the noisy class-prior probability of the j-th class
- $p_j(x) = p(x \mid y = j)$  the clean class-conditional density of the *j*-th class
- $\tilde{p}_j(x) = p(x \mid \tilde{y} = j)$  the noisy class-conditional density of the *j*-th class
- Then, R(g) can be decomposed into a class-wise manner
  - $R(g) = \mathbb{E}_{p(y)}\mathbb{E}_{p(x|y)}[\ell(g(x), y)] = \sum_{j=1}^{c} \pi_j \mathbb{E}_{p_j(x)}[\ell(g(x), j)] = \sum_{j=1}^{c} \pi_j R_j(g)$ where  $R_j(g) = \mathbb{E}_{p_j(x)}[\ell(g(x), j)]$  is the (partial) risk of the *j*-th class

| Motivation | IDN         | MCD      | Conclusions |
|------------|-------------|----------|-------------|
| 00000      | 00000000000 | 00000000 | 0000        |
|            |             |          |             |

#### Risk alignment and rewrite (paragraph data and detailed and)

- Consider a pseudo risk  $\widetilde{R}(g)$  on the noisy distribution  $p(x, \tilde{y})$ -  $\widetilde{R}(g) = \mathbb{E}_{p(\tilde{y})} \mathbb{E}_{p(x|\tilde{y})}[\ell^{b}(g(x), \tilde{y})] = \sum_{j=1}^{c} \tilde{\pi}_{j} \mathbb{E}_{\tilde{p}_{j}(x)}[\ell^{b}(g(x), j)] = \sum_{j=1}^{c} \tilde{\pi}_{j} \widetilde{R}_{j}(g)$ where  $\ell^{b}$  is the corrected loss and  $\widetilde{R}_{j}(g) = \mathbb{E}_{\tilde{p}_{j}(x)}[\ell^{b}(g(x), j)]$
- We would like to align the pseudo risk  $\widetilde{R}(g)$  to the risk R(g)
  - Theoretically,  $\ell^b(\cdot, j)$  as a linear combination of  $\{\ell(\cdot, 1), \dots, \ell(\cdot, c)\}$  suffices Let U be the coefficient matrix for  $\ell^b$  such that  $\ell^b(\cdot, j) = \sum_{k=1}^{c} [U]_{k,j}\ell(\cdot, k)$
  - $\begin{array}{l} \widetilde{R}_{j}(g) = \mathbb{E}_{\sum_{l}[S]_{j,l} \mathcal{P}_{l}(x)} \left[ \sum_{k} [U]_{k,j} \ell(g(x),k) \right] = \sum_{k,l} [U]_{k,j} [S]_{j,l} \mathbb{E}_{\mathcal{P}_{l}(x)} [\ell(g(x),k)] \\ \text{and thus the coefficient of } \mathbb{E}_{\mathcal{P}_{l}(x)} [\ell(g(x),k)] \text{ in } \widetilde{R}(g) \text{ is } \sum_{j} \widetilde{\pi}_{j} [U]_{k,j} [S]_{j,l} \end{array}$
  - By matching the two coefficients of  $\mathbb{E}_{p_l(x)}[\ell(g(x), k)]$  in  $\widetilde{R}(g)$  and R(g)we can see that  $\sum_i \tilde{\pi}_i[U]_{k,i}[S]_{j,l}$  should be  $\pi_k$  if l = k and 0 otherwise
  - Solving the set of linear equations, we can derive  $[U]_{k,j} = [S^{-1}]_{k,j} \pi_k / \tilde{\pi}_j$
- By risk alignment, we successfully rewrite R(g) into R(g)

| Motivation | IDN | MCD      | Conclusions |
|------------|-----|----------|-------------|
|            |     | 00000000 |             |
|            |     |          |             |

## Consistent risk correction (see many and us astrong and

- However, BC for MCD tends to overfit the training data
  - $\ell^b(\cdot, j)$  is a linear combination but not convex combination of  $\{\ell(\cdot, k)\}$
  - We may suffer from that  $[U]_{k,j} = [S^{-1}]_{k,j} \pi_k / \tilde{\pi}_j < 0$  for some j and k



- Aggressive ideas: enforce  $[U]_{k,j} \ge 0$  or  $\ell^b(g(x_i), \tilde{y}_i) \ge 0$
- Least aggressive idea: just enforce  $\widehat{\mathbb{E}}_{p_i(x)}[\ell(g(x), j)] \ge 0$

# Connection to learning from unlabeled data

- Binary classification (based on empirical risk minimization)
  - Classifier training is impossible given a single set of U data  $({\tt Lu+, \ ICLR \ 2019})$
  - This becomes possible given two sets of U data with different class priors by assuming/forcing  $p(y = +1) = \frac{1}{2}$  (du Plessis+, TAAI 2013; Menon+, ICML 2015)
  - p(y) becomes free (Lu+, ICLR 2019), and practical solution (Lu+, AISTATS 2020)
  - Able to train from  $\geq 3$  different-class-prior U datasets (Lu+, ICML 2021)
- Multi-class classification (based on empirical risk minimization)
  - Should be possible if the number of U datasets = the number of classes
  - However, mapping U datasets to right corrupted classes is combinatorial

| Motivation | IDN        | MCD     | Conclusions  |
|------------|------------|---------|--------------|
| 00000      | 0000000000 | 0000000 | <b>●</b> 000 |

# Outline



Instance-dependent noise (IDN)

#### Mutually contaminated distributions (MCD)

#### 4 Conclusions

## Two ways to go beyond CCN

#### • Instance-dependent noise (IDN)

- $\boldsymbol{p}_{\tilde{y}|x} = T(x)^{\top} \boldsymbol{p}_{y|x}$ , the best model for the labeling-process corruption
- When we confirm/believe p(x) does not change, apply IDN methods
- Very hard to estimate T(x):

Rely on part-dependent noise if we can decompose our data into parts Rely on confidence-scored IDN if we collected or can assign the scores

- Mutually contaminated distributions (MCD)
  - $p_{x|\tilde{y}} = Sp_{x|y}$ , the best model for the sampling-process corruption
  - When we confirm/believe p(x) may change, apply MCD methods
  - Very hard to estimate S: Best to (re)label a small subset of data
  - Don't forget learning rate decay and/or consistent risk correction

| Motivation | IDN | MCD | Conclusions |
|------------|-----|-----|-------------|
|            |     |     | 0000        |
|            |     |     |             |

## Future directions

- IDN and MCD are huge future directions of noisy supervisions
  - How to adjust/modify the sample selection/label correction methods for them
- Within IDN
  - What assumptions, besides part-dependent noise, can make T(x) identifiable
  - What information, besides confidence scores, can also help to estimate T(x)
- Within MCD
  - How to better mitigate the overfitting of its backward corrections
  - How to accurately estimate S, i.e., the mixture proportion matrix
- Even beyond IDN and MCD
  - A partial label for  $x_i$  is a set  $Y_i$  of candidate labels, including the true label  $y_i$
  - It belongs to inexact supervision rather than inaccurate/noisy supervision but the key ideas here can be applied (Lv+, ICML 2020; Feng+, ICML 2020 & NeurIPS 2020)

| Motivation | IDN         | MCD      | Conclusions |
|------------|-------------|----------|-------------|
| 00000      | 00000000000 | 00000000 |             |
|            |             |          |             |

# Thanks

## Q & A