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What is Machine Learning (ML)?

COVID Simulation
Petroleum Exploration
Drug Discovery

Security Monitoring
Bio-payment
Flow Statistics

Search Engine
Recommender Systems
Loss Assessment

ﬁ-wuﬁ

Image Classification

Applications

Drug Design

Learn to make decisions

Face Recognition

Predict the class of the object Who is the person

Structure Samples

7/

(iterative)

» Prediction Accuracy

Vemm e

Definition
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optimization

Parameters

&) HF+288FIRRA

Department of Electronic Engincering. Tsinghua University

PAVAYAN
| IJCAI 2021 KW\/)

MONTREAL |

Better Performance

Higher Efficiency

[1]. I\/Iachine Learning, Tom Mitchell, McGraw Hill, 1997.
= 12853, JLE IBAE AR, 20165
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ML = Data + Knowledge ]

Image Classification
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Optimization @
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@ @ © @ inputs and
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Generalization @
Accuracy

Design a hypothesis (function) f to perform the learning task

Better Performance —~——> Generalization —~——> What kind of f should we use?

(more important)

Higher Efficiency ——> Optimization —r——> How can we find such f?

%

Target Concept Issue

Not everything
can be learnt

PAC-Learning (pefinition 2.3 in [1]): What kind of problems can be solved in polynomial time
No Free Lunch Theorem (appendix B [2]): NO single algorithm can be good on all problems

[1]. M. Mohri, A. Rostamizadeh, A. Talwalkar. Foundations of machine learning. 2018
[2]. O. Bousquet, et.al. Introduction to Statistical Learning Theory. 2016 4
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How to use ML Well? L

CNN RNN

/ éH&HZFE

Generalization: What kind of f should we use?

Prior Knowledge Optimization

Hypothesis

Model

SGD v.s. Adagrad!]

Generalization Performance . _
Optimization: How can we find such f?

The Advancement of Learning k led
Prior knowledge

.

“All models are wrong, but some are useful”!2!

- An iteration between theory and practice

- A feedback loop

Better understanding of prior knowledge — Better hypothesis — Better generalization performance

[1]. Image Source: A. Amini et al. “Spatial Uncertainty Sampling for End-to-End Control”. NeurlPS Bayesian Deep Learning 2018
[2] G. Box, Science and statistics, JASA 1976
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Simple Example — Tune hyper-parameter

Most Accurate Model
High Bias based on primary test set Low Bias
Bi-level optimization Hyper-parameter Low Variance High Variance
Underfitting Overfitting
Most
" " . Generalizabld
max h(xj;w ) s.t. w* = min flx;w) w4
A j w i g
]
| | | ||z
| | 5
L . u
Validation Training
Performance objective R
Model Complexity
* Large A leads to sparse w* : ~
] ] ® P e .® o * .® o *
* Grid search: enumerating A € {1,2,4,8, ... } e s s TS Yo o
."o..o. .'.’0..0. .'.o'.o.
.. " .. - .. -

[1]. Image source: Artificial Intelligence and Machine Learning in
Pathology: The Present Landscape of Supervised Methods.
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Mach. Learn — Error decomposition ]

optimal: fAL Total error in machine learning

_ _ * Approximation error
approximation error
— Which classifier to be used

Best in H: h

— What are their hyper-parameters
=\ _estimation error o
— Distribution changes

empiri Reduce

* Estimation error <
— Finite samples muinz.f(xi; w) +®|W||1
l

— Regularization hyper-parameter

optimization error

* Optimization error

— Which algorithm to be used

— How to tune its step-size

Image is from Y. Wang, et. al. Generalizing from a Few Examples: A Survey on Few-Shot Learning. CSUR 2020 3
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Look Inside Error Decomposition o]

optimal: fAL

Automatically find h* by bi-level optimization

approximation error

mjaxz.h(xj;w*) s. t. W*=mvinz_f(xi;w)+/1llwlll
\ ’ ) W )

| |
L L -\ estimation error
Validation Training
Performance objective empirical best: h;

optimization

How to further improve the performance in an automatic error

manner (i.e., reduce the approximation error)?

~

H start

* Feature can be weak - Automatic feature engineering

* Linear predictor can be too restrictive = Neural architecture search

e Grid search can be S|O\&—> Search in a supernet
uto




Figure is from Q. Yao et.al. Taking Human out of Learning Applications: A Survey on Automated Machine Learning. arXiv 2018 EFE, ”f g/
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What is AutoML — Practical Vlewpomt ]

How to represent the el Ca;il y = CN__NL / C?) @ T ny

learning problem?  [1s] = § U] ml- qj—n A |—~[ - A l—*l A

o] = O O S
Fuman Prior Knowledg{é 5
Experts What type of functions (hypothesis space) should we use-

ind the
/ / /' target function? GD v.s. Adagrad

Problem definition Feature Model Optimization Evaluation Deployment
/ o 3 //' oy \ Q E,.ce\\et\k Qg m ‘i
¢ . ” . N eood g = 4 -
) o - 2 mmp S SN =) © WO
4 A podt =
~ T & Oeo
Data collection Feature engineering Model selection Algorithmselection

Parameterize in the usage and design of machine learning

As a consequence < Human participations can be naturally replaced by computation power
* total error of machine learning can be reduced (generalization can be improved) 10



Figure 4.1 & 4.2. M. Mohri, A. Rostamizadeh, A. Talwalkar. Foundations of machine learning. 2018
[1]. P. Battaglia. et.al. Relational inductive biases, deep learning, and graph networks. arXiv 2018.
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What is AutoML — Generalization Vlewpom“f’

Parameterized the prior knowledge of learning methods, e.g.,

o Hypothesis space
e minimize the total error

parameterized by y

* reduce parameter numbers

Perform efficient search in the designed (new) space

* combinatorial generalize new models from existing ones!t!

Classica >

hB ayes
O

hBayes
AutoML

Parameterize in the usage and design of machine learning

As a consequence ¢ Human participations can be naturally replaced by computation power
e total error of machine learning can be reduced (generalization can be improved) 11



Why We need AutoML?
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17

2012

2012-20187 [ A TH AEimb 8 841 (127T)

Top Three Challenges to the Adoption of Al by Organizations

Lack of Necessary Staff Skills 54%
Defining Our Al Strategy 37%
Identifying Use Cases for Al 35%
58
i)
2013 0% 30% 60%

Practical needs

Hype Cycle for Data Science and Machine Learning, 2020

~ Explainable Al
/r~ MLOps
/
Data Labeling and Annotation Services — /

-~ — hugeagted DSML
Al-Related C8S! Services —\ /@)
Large-Scale Pretrained j %7 FTen Data Science

Ny i
Language Mode! _— Deep Neural Networks (Deep Learning)

Decision Intefligence —
J Prescriptive Analytics
Synthetic Data @

1
Transfer Learning @ . Graph Analytics

Reinforcement Learning — © Advanced Video/image Analytics

Kubetiow ~\J _Lom——0"

\
Adaptive ML — Q Event Stream Processing Voou L Notebooks
\ > s |
Federated Machine Learning \ L \ |
Differential Privacy \ <

l Apache Spark

expectations

-~ \l
\ ” \'= Text Anal
Generative Adversarial _# \ / \ ext Analytics
Networks  J . o = Predictive Analytics
Seif-Supervised Leaming @

Quantum ML A

As of July 2020

time
Plateau will be reached

(o] o [ ] A ®

About 5 years to be mature

Source: Gartner
ID: 450404

Technical trends

* Industry — reduce the expense, increase usage coverage — huge market value 1]

* Academy — understanding data science on a higher level — great intelligence value 23]

[1]. Gartner: https://www.forbes.com/sites/janakirammsv/2020/03/02/key-takeaways-from-the-gartner-magic-quadrant-for-ai-developer-services/#a95b99ee3e5e

[2]. Y. Bengio: From System 1 Deep Learning to System 2 Deep Learning | NeurlPS 2019

[3]. F Hutter, L Kotthoff, ] Vanschoren. Automated machine learning: methods, systems, challenges. Book 2019

12




Related Areas

Sub-areas

* Neural architecture search

* Hyper-parameter search

e Automated feature engineering
* Algorithms selection

e Model selection

MONTREAL |

Related areas

* Bi-level / Derivative-free optimization
* Focus more on algorithm design

* AutoML objective is one kind of objective where these
algorithms can be applied

* Meta-learning
* Focus on parameterize task distributions
* Another kind of bi-level objective

* Do not use validation set to update hyper-parameters
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14
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How to use AutoML ]

1. Define an AutoML problem

* Derive a search space from insights in specific domains

* Search objective is usually validation performance

* Search constraint is usually resource budgets

* Training objective usually comes from classical learning models

1. Search
Space

mln(M(F(W /1) Dval)}f Search Objective

— /165

Bi-level

optimization [H‘lAl’n L(F(W; /1)’ Dtra)}*
4. Training t { W
” [ G(A) <C }7 Search Constraints

2. Design or select proper search algorithm

Objective

* Reduce model training cost (time to get w*)

15
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What is AutoML — Short Summary i,

* Exploring prior knowledge is important in machine learning
* Cost time and critical to generalization performance

* AutoML attempts to parameterize low-level prior knowledge
 Human participations can be naturally replaced by computation power
 total error can be reduced (generalization can be improved)

* To use well AutoML techniques
* Exploring high-level domain knowledge when defining the AutoML problem
* Reducing model training cost when design search algorithm
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1. What is Automated Machine Learning (AutoML)?

2. Sample Selection for Learning with Noisy Labels (LNL)

* What are Small-loss Samples
e Co-teaching, its Variants and Limitations
* Design Sample Selection Criterion by AutoML

3. Future Works & Summary

17
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Success of Deep Networks o

110 —
100 - ap - -
L] I i _BRl
N NASNET-A(8) AdvProp [EfficientMet-B3)
':_:' Reshet-152(a0n)
o NGG-19
-]
[ -
[ ] FU
< . seg(Teat - 7 accurate models
n Simple Grow deeper and larger
(0
O network
'_
a0

2012 2014 2014 2018 2020

Other models Maodels with highest Top 5 Accuracy

Big & High-quality data is the fuel

Figure is from https://paperswithcode.com/sota/image-classification-on-imagenet?metric=Top%205%20Accuracy 18
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Where does Big Data Comes from? onen]

. Hamburger
Crowd-sourcing =

An example worker on AMT

Incorrect ones Correct ones

Web crawler

frencn fnes and El beer

Hamburger wit)

Course Main course take words from caption
Place of Hamburg (Germany) or United as |a be|s

origin States (disputed)

Created by Multiple claims (see text)

Serving Hot

temperature

Main Ground meat, bread

ingredients

% Cookbook: Hamburger
@ Media: Hamburger

19
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Where does Big Data Comes from? e

Crowd-sourcing
* Workers may not be reliable

* There can be spammers or attackers

Big & High-quality data: difficult & expensive

Web crawler

* The context can be complex

e Caption may not be relevant

* Data: what we usually have in hand is a big data with noisy labels

* Performance: noisy labels degrade the accuracy of deep neural networks by 20% to 40%
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Where does Big Data Comes from? e

If the classifier A has the ability to predict, then A sample with
noisy labels should have larger loss than sample with correct labels

Small-loss samples

— Likely to be clean samples

Using hinge loss as an example

* Red points: zero loss

Clean ground-truth Noisy labels * Blue points: much larger than zero

Please check more explanations in theory in “Part Il: Statistical Learning with Noisy Supervision” By Tongliang Liu 21
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What is Special about Deep Networks? e

Stochastic gradient descent (SGD) is a must for training deep networks

[Zhang, etal. 2016]

1.0 TR PTITOIOI-9-OrPre-Pr@ro-0-9-o-e
@
@
5 0.9
@]
©
| .
3 0.8
o
©
o=0 test(Inception)
0.7 oo train(Inception)
=== test(Inception w/o BN)
train(Inception w/o BN)
0.6
0 5 10 15 20
thousand training steps
Image classification Train/test accuracy v.s. steps

22
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What is Special about Deep Networks? ]

(MNIST, Pair-45%)

Noisy labels

0.80 -8
Standard
CNN g
s
(]
()
=T
7
L (1,400
|_
.20
[Han, etal. 2018]
0,000 - ) ! ! 5
0 50 100 150 200

Epoch
Test accuracy v.s. steps

Memorization effect: Learning easy patterns first, then (totally) over-fit noisy

training data. Independent with network types and structures.
23

C. Zhang et.al. Understanding deep learning requires rethinking generalization. ICLR 2017
D Arpit et.al. A closer look at memorization in deep networks. NIPS 2017
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How to Learn from Noisy Labels? e

Fundamental properties

Facts
* SGD is almost a must for deep networks

* Noisy labels has larger losses.
* Deep networks have memorization effects

How can we robustly learn from noisy label utilizing

above properties and fact?
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1. What is Automated Machine Learning (AutoML)?

2. Sample Selection for Learning with Noisy Labels (LNL)

 What are Small-loss Samples
e Co-teaching, its Variants and Limitations
* Design Sample Selection Criterion by AutoML

3. Future Works & Summary

25



Prior Work — Menter-net [Luet.al. 2018]

M-Net
p—-——
I
I

Mini-batch 1, 0
|

Mini-batch 2 :
|

Mini-batch 3 | 0
|

S

{
I
I

Deep networks are all based on

e Stochastic gradient descent

e Gradient is performed by mini-batch

Mentor-Net

o) 1 EmTFIRE
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» drop samples with large loss in each mini-batch, use small loss

samples in each mini-batch to update parameters

* use one classifier to self-bootstrap

26
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Prior Work — DECOUp“ng [E. Malach and S. Shalev-Shwartz, 2017 ]~ m==x]

- ———— Easy samples

* Can be quickly learnt and classified (memorization)

Mini-batch 1

* Have small gradients, which slow down network training

]
I

(B)
|

o I Decoupling
|
|

o |
]

-

Mini-batch 2

* Focus on hard examples, which can be more informative

Mini-batch 3 * Use samples in each mini-batch that two classifiers have different

_—_—_—__H

>0

predictions to update network

27
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Message from Prior Works el
M-Net - Decoupling
AL L
Mini-batch 1 ¥ | Mentor-net | Decoupling |
P ER D T e e
Mini-batch 2: o :: o - o : SGD VS JES
Mini-batch 3 : (A :: (A j

- -\

]
]
]
]
\

How can we robustly learn from noisy label utilizing (small loss, memorization and SGD)?

28
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Co-teaching — Core idea oonen]

Why not exchange small loss in each mini-batch for two classifiers?

M-Net Decoupling Co-teaching

N . - F____

Mini-batch 1 I 0 | ' o o o o

I
. . I
Mini-batch 2 : o

I I=
Mini-batch 3 | 0 y o o 1 o o
| 7 N\

__N

-_—_—_—_—‘

B. Han et.al. Co-teaching: Robust training deep neural networks with extremely. NeurlPS 2018
29



Co-teaching — Implementations
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Algorithm 1 Co-teaching Paradigm.

1: Input w; and w,, learning rate 7, fixed 7, epoch T}, and T},,,, iteration Ny,
forT =1,2,...,Tpax do

end

end

2: Shuffle training set D; //noisy dataset

for N =1,..., Npax do

3: Draw mini-batch D from D:

4: Sample D; = arg minp £(f, D, R(T)); /Isample R(T')% small-loss instances
5: Sample D, = arg ming £(g. D, R(T)); /Isample R(T')% small-loss instances
/lupdate w; by D,;

exchange small loss sample;;:llpdate wy by Dy
g »

7: Update w, = w,

8: Update R(T) =1 — min{%‘r’ r};

9: Output w and w,

Change the procedures in SGD algorithm

MONTREAL |

30
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Co-teaching — Key questions ovonen]

Q1. Why can sampling small-loss instances help find clean instances?
 When labels are correct, small-loss instances are more likely to be ones with correct labels
* However, the above requires that the classifier is reliable enough. The “memorization” effect of

deep networks can exactly help us address this problem

31



@) (o) fFrfmTIRA

‘J Department of Electronic Engincering. Tsinghua University

| IJCAI 2021 /W\/\

Co-teaching — Key questions ovonen]

Q2. How many samples to be kept?

2 —— ResNet-50
* During the initial phase when the learning curve rises, the deep - ﬂ D g
| RN = T s
. . > M Db i he — Small CNN Model 3
network is plastic and can learn easy patterns. One can allow a A A .
v 20 f |
larger R(t) as there is little risk of memorization. °1 |
]
* As training proceeds and the learning curve has peaked, the £ 5 5 B de i oy
network starts to memorize and overfit the noisy samples. Hence,
J— : [
R(t) should then decrease. R(t) =1 —7-min ((t/tx)%,1),

32
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Co-teaching — Selection rule rnn]

Algorithm 1 Co-teaching Paradigm.

1: Input w; and w,, learning rate 7, fixed 7, epoch T}, and T},,,, iteration Ny, ;
forT =1,2,...,Tmax do

2: Shuffle training set D; //moisy dataset
for N =1,..., Npax do
3: Draw mini-batch D from D; 10 |
4: Sample Dy = argming ¢(f, D, R(T)); /Isample R(T)% sm| g5
5: Sample D, = arg ming £(g, D, R(T)); //sample R(T)% sm
6: Update w; — wy —an(_ ) n ...
7: Update wy = wg — an(Df); ”lﬁ 06 \ —— Standard (without R(t))
end os] | e
8: Update R(T) How many Samples 04 1 I. — :[tksc:egu:ei
end to be kept Lo R schedule
9: Olltpllt w_f 3[1(1 wg Rit) schedule 6

0 2% 50 75 100 125 150 175 200
Epoch £

R(t) =1—7-min ((¢/t), 1),

33
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Experiments — Setup rornca
# of training | # of testing | # of class | 1mage size
MNIST 60,000 10,000 10 28x28
CIFAR-10 50,000 10,000 10 32x32
CIFAR-100 50,000 10,000 100 32x32

- 19. 5% * Transition matrices of different noise types (using 5 classes
as an example)

* Pair is much harder than symmetry

- 12. 5% -

(a) Pair (e = 45%). (b) Symmetry (e = 50%).

34



Experiments — Setup

CNN on MNIST

CNN on CIFAR-10

CNN on CIFAR-100

28 x28 Gray Image

32x32 RGB Image

32x32 RGB Image

3x3 conv, 128 LRelLU
3x3 conv, 128 LReLLU
3x3 conv, 128 LReLLU

2 x2 max-pool, stride 2
dropout, p = 0.25

3x3 conv, 256 LReLLU
3x3 conv, 256 LReLU
3x3 conv, 256 LReLU

2 x2 max-pool, stride 2
dropout, p = 0.25

3x3 conv, 512 LReLLU
3x3 conv, 256 LRelLU
3x3 conv, 128 LReLLU

avg-pool

dense 128—10

dense 128—10

dense 128—100

Department of Electronic Engincering. Tsinghua University

e AErtmFIRR
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CNN models used on MNIST, CIFAR-10, and
CIFAR-100. The slopes of all LReLU functions
in the networks are set to 0.01

These are not state-of-the-art models, but
testbed for noisy labels [S. Laine and T. Aila,
2017]

35



Experiments — MNIST

Average test accuracy on MNIST over the last ten epochs
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Flipping-Rate Normal | Bootstrap | S-model | F-correction | Decoupling | MentorNet | Co-teaching
Pair-45% 56.52% | 57.23% 56.88% 0.24% 58.03% 80.88% 87.63 %
+0.55% | +£0.73% | £0.32% +0.03% +0.07% +4.45% +0.21%
Symmetry-50% | 66.05% | 67.55% 62.29% 79.61% 81.15% 90.05% 91.32%
+0.61% | £0.53% | +0.46% +1.96% +0.03% +0.30% +0.06%
Symmetry-20% | 94.05% | 94.40% 98.31% 98.80% 95.70% 96.70% 97.25%
+0.16% | £026% | £0.11% +0.12% +0.02% +0.22% +0.03%

36
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Experiments — MNIST ]

Test Accuracy

— Normal — Bootstrap —  S-model F-correction — Decoupling MentorNet — Co-teaching
100 {MNIST, Pair-45%) : . 100+ AMNIST, Symmetry-50%) 1,00+ (MNIST, Symmetry-20%)
- ; A
0.98-
0,80
0.946-
> >
0.60 = 5
E [ = 0.9
o 5
=L =L
) = .92
0.40- o a0
=, =
0.90-
0.201
0.88-
0.00 4 . ! ! 0.554 = - s 0,86 : ; . .
0 50 100 150 200 o 50 100 150 200 a 50 100 150 200
Epoch Epoch Epoch
(a) Pair-45%. (b) Symmetry-50%. (¢) Symmetry-20%.

Test accuracy vs number of epochs on MINIST dataset
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Experiments — MINIST ommmen

{MMNIST, Pair-45%) _ _ AMNIST, Symmetry-50%) _ . AMNIST, Symmetry-20%!)
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(a) Pair-45%. (b) Symmetry-50%. (c) Symmetry-20%.

Label precision vs number of epochs on MNIST dataset.
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Experiments — R(T)

Impact of memorization

c

R(T) =1—min {—T,T
Ty

}

Choices

c €{0.51.0,2}
T, € {5, 10, 15}

Algorithm 1 Co-teaching Paradigm.

1: Input w; and w,, learning rate 7, fixed 7, epoch

for

end

T=1,2,...,Thax do

2: Shuffle training set D;

for N =1,..., Npax do

3: Draw mini-batch D from D;

4: Sample D; = argminp ¢(f,D, R
5: Sample D, = arg minp £(g,D, R
6: Update ws = ws — nV f(D,);
7: Update w, = w, — nVg(Dy);

end
8: Update R(T) R(T)

9: Output w and w,

Department of Electronic Engincering. Tsinghua University
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Experiments — R(T)

c=0.9 c=1 c=2

Pair-45% T = 75.56%+0.33% 87.59%40.26% 87.549%+0.23%
T =10 88.43% +0.25% 87.56%+0.12% 87.939%4+0.21%

T, =15 88.37 % +0.09 % 87.29%+0.15% 88.09% +0.17 %

Symmetry-50% 1. =5 91.75%+0.13% 91.75%+0.12% 92.20% +0.14%
T, =10 91.70%+0.21% 91.55%+0.08% 91.27%+0.13%

T. =15 91.749%+0.14% 01.209%+0.11% 01.38%+0.08%

Symmetry-20% T = 07.05%+0.06% 07.10%40.06% 97.41%=+0.08%
T, =10 07.33%+0.05% 06.97%40.07% 97.48% +0.08 %

T, =15 07.41%=+0.06% 07.25%40.09% 97.51% +0.05%

* R(T) and 7 can influence the performance

* However, their sensitive is not high, and they can be easily set

* |n previous experiments, we setc=1and T}, = 10



Ty Py
P =,
3oty e QO P & BFIER
oI Ry “Z FR
e LAY v, o A0 p— . . . . e . .
'“-1 g M Depantment of Electronic Engincering. Tsinghua University
be e

PAVAYAN
| IJCAI 2021 |<\/\/\/>l

Co-teaching — Variants =

1. Utilize unlabeled data using semi-supervised learning
e Lietal., ICLR 2020, Liu et al., NeurIPS 2020.

2. Stronger rule to select small-loss samples
* Yuetal., ICML 2019, Arazo et al., ICML 2019, Y. Kim et al. CVPR 2019

3. Learn soft instead of hard weights for samples
e J. Shu et at. NeurlPS 2019, J. Lu et al. ICML 2020
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Outline o

1. What is Automated Machine Learning (AutoML)?

2. Sample Selection for Learning with Noisy Labels (LNL)

 What are Small-loss Samples
e Co-teaching, its Variants and Limitations
e Design Sample Selection Criterion by AutoML

3. Future Works & Summary
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Search to Exploit Memorization Effect e

* Key component to exploit memorization effect: R(t)
e controls the percentage of small-loss samples

* Hard to set an appropriate R(t)
* memorization effect is complex
* depends on datasets, noise type, noise ratio, architecture, ...

* We are encouraged to apply AutoML to this problem

e “search” an appropriate R(t)
How?

Q. Yao et.al. Searching to Exploit Memorization Effect in Learning from Corrupted Labels. ICML 2020
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Message on using AutoML v

1. Define an AutoML problem from insights in specific domains

2. Design a search algorithm reducing model training cost

1. Search
Space

Bi-level mln(M (F(w*; 1), Dval)} Search-Objective

optimization ., eS|

4. Training

Objective { [H}Al’n L(F (W; /D; Dtra)}i
s. t. -

[ GA) <C }—Sea;eh@enmm

44



Revisit Memorization Effect

Test accuracy (%)
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CIFAR-10 + 20% symmetric
CIFAR-10 + 50% symmetric
CIFAR-10 + 45% pairflip
CIFAR-100 + 20% symmetric
CIFAR-100 + 50% symmetric
CIFAR-100 + 45% pairflip
MNIST + 20% symmetric
MNIST + 50% symmetric
MNIST + 45% pairflip

00 125 150 175 200

Epoch t

0 5 s 7

(b) Different data sets (training accuracy). (¢) Different data sets (testing accuracy).

= Baseline
40 = Random R(t) 1 100
== Random R(t) 2
_ = Random R(t) 3 80
g — RandomR(t)4 | 3 e
> —— Random R(t) 5 <4 0 = CIFAR-10 + 20% symmetric
g —— Co-teaching 8 4 CIFAR-10 + 50% symmetric
g 2 —— Searched g —— CIFAR-10 + 45% pairflip
o ® 40 ~ CIFAR-100 + 20% symmetric
§ :_:': ~— CIFAR-100 + 50% symmetric
10 20 = CIFAR-100 + 45% pairflip
MNIST + 20% symmetric
= MNIST + 50% symmetric
0 0 MNIST + 45% pairflip
0 25 50 s 100 125 150 175 200 0 5 50 1:] 100 125 150 175 200
Epoch t Epocht
(a) Impact of R(t).
50 = ResNet-50 — SGD
~— DenseNet-169 50 RMSProp
40 = MobileNetV2 - Adam
o ~ Small CNN Model 1 _ 4
R ~ Small CNN Model 2 *
= —— Small CNN Model 3 | >
e ! € 30
= 2
S 20 8
bo &
t o 20
: - : vam
10
0
0 P 50 IE) 100 125 150 175 200 0 200 400 600 800 1000
Epoch t Epoch t

(d) Different architectures.

(e) Different optimizers.

Test accuracy (%)

10

Learning rate 0.001
Learning rate 0.0005
Learning rate 0.0001
Batch size 64

Batch size 128
Batch size 256

T

600
Epoch t

800 1000

(f) Different optimizer settings.

Figure 1. Training and testing accuracies on CIFAR-10, CIFAR-100, and MNIST using various architectures, optimizers, and optimizer
settings. The detailed setup is in Appendix A.3.
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Derive a Search Space

* During the initial phase when the learning curve rises, the deep network is plastic and can learn
easy patterns from the data. In this phase, one can allow a larger R(#) as there is little risk of
memorization. Hence, at time £ = (), we can set 2(0) = 1 and the entire noisy data set is used.

* As training proceeds and the learning curve has peaked, the network starts to memorize and overfit
the noisy samples. Hence, R(t) should then decrease.

* Finally, as the network gets less plastic and in case R(f) drops too much at the beginning, it may
be useful to allow R(#) to slowly increase so as to enable learning some complex patterns.

Table 1: The four basis functions used to define
the search space in the experiments. Here, a;’s

are the hyperparameters.

fi(t:a) e—a2t™l (}.3(%}34
fa(t:a) e—aztt 4 “.‘i%
fa(t; a) ITalgr'J“_l + ag(4)
fa(t:a) W‘l‘ﬂg%

10 1 mmm Jarget
Basis function 1
~—— Basis function 2

0.8 —— Basis function 2
Basic function 4
—— Combined
0.6 1

04 1

02 A

0 5 s, 75 100 125 150 175 200
Figure 4: Plots of the basis functions in Table 1
An example R(-) to be learned is shown in blue.
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Define an AutoML Problem o]

Bi-level objective
0 = arg Irgll J(8), s.t.w(Rz) = argming Ly(w, Ry,
where
Search objective: 7(0) = E,p, (z) [ Lval(W(Ra) / Lya(w(Rg))pe(x) de,
* R(t) is complexly coupled with training process gradient w.r.t. R(t) is hard to obtain

« Stochastic relaxation is used gradient is taken w.r.t 6 instead of R(t)

Search space: R(t) = Z; a; - fH(t;8) : {a, {,Si}} €S,

* R(t) is derived based on memorization effect
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Derive a Search Algorithm o

The general idea is to introduce Hessian matrix to solve stochastic bi-level objective

* Faster convergence — reduce the number of updates on 8 — less time on model training

Algorithm 2 Search to Exploit (S2E) algorithm for the

6 = arg HHH J(0), st w(Rg) = argming Le(w, Re), minimization of the relaxed objective 7 in (6).

I: Initialize ' = 1 so that pg(x) is uniform distribution.

Gradient V.7 (6 / f(x)Vpe(x)dx 2. form=1,..., M do
TES 33 fork=1,...,Kdo

4: draw hyperparameter @ from distribution pgm (x);
Hessian H(0;z) = f(x)(V*log pe(z) + V log pg(x )?lugpg(..c) ) 5 using @, run Algorithm 1 with R(-) in (4);

6:  end for

7:  use the K samples in steps 3-6 to approximate
Can be faster than first-order method in AutoML VJ(0™)in (7) and V7 (6™) in Proposition 1;

8 update 8™ by (8);

9: end for
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Experiments — Overall performance

o~ (CIFAR-10, Symmetry-20%)

60.00

(CIFAR-10, Symmetry-50%)
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Test Accuracy (%)
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CIFAR-10, same setup as Co-teaching

F-correction

MentorMet ——— Co-teaching

—— Co-teaching+ —— Reweight — S2E

49



* Qur searched R(t)

* more flexible
* cleaner training set

R(t)
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10 10 10
= Coand Co+ —— Coand Co+ —— Coand Co+
= S2E MNIST = S2E MNIST = S2E MNIST

08 === S2E CIFAR-10 08 === S2E CIFAR-10 08 === S2E CIFAR-10
== S2E CIFAR-100 == S2E CIFAR-100 == S2E CIFAR-100

06 06 06

g g
04 04 04
02 02 02 PR
T T T T T T T T 00 T T T T T T ¥ 00 T T T T T T T
0 r=) 50 B 100 125 150 175 200 35 50 ) 100 125 150 175 200 P 50 s 100 125 150 175 200
Epocht Epocht Epocht
(a) symmetry flipping (20%). (b) symmetry flipping (50%). (c) pair flipping (45%).

Figure 4. R(-) obtained by the sample selection methods. Note that MentorNet (MN), Co-teaching (Co) and Co-teaching+ (Co+) all use
the same R(t).
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(a) symmetry flipping (20%). (b) symmetry flipping (50%). (c) pair flipping (45%).

Figure 5. Label precision of S2E and Co-teaching.
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Experiments — Search Algorithm e

* Search algorithm:
* much more efficient

55 1
50.0 1
:‘ — 475
— w 1
£ £ 4501
i g s g 0]
= >
| o vl
4 = Random L = Random ° 400 Random
BO é 40 1 RO .g — PO
52 1 —— Hyperband —— Hyperband 37.5 - ~—— Hyperband
GD GD GD
] — NG 3 — NG 35.0 1 — NG
- Newton = Newton - Newton
48 i T T T T T T T L] T T T T T L L T T T 32 5 T T T T T T T T T
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Number of trained models Number of trained models Number of trained models
(a) symmetry flipping (20%). (b) symmetry flipping (50%). (c) pair flipping (45%).

Figure 6. Search efficiency of S2E and the other search algorithms.
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Sample Selection for NNL — Short Summary — b

* Noisy label learning problem is important

* Small-loss based method is popular and empirical work well
* Co-teaching is an exemplar work with many variants
* Design sample selection rule is hard

 AutoML is a promising way to design sample selection rule
* Good search space relies on memorization effect
* Reduce model training times is important to reduce search cost
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Outline o

1. What is Automated Machine Learning (AutoML)?
2. Sample Selection for Learning with Noisy Labels (LNL)
3. Future Works & Summary
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Future Works & Summary e

AutoML is a meta-approach to

* improve learning performance

* understand domain information at a higher level

Your next work can be on “what else can be searched in NNL”.
* Robust loss functions is an example

Seek more opportunities from other tutor’s slides!

* Take S2E as an example.



PAvAVAN
| IJCAI 2021 KW\/)

MONTREAL |

Thanks!
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