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Learning without noisy labels

Data: ! = #$, &$ , … , #(, &( ∼ *( .

Aim: Learn a classifier + ∈ -, such that ∀ #, & ~*,
+(#) is a good prediction for &.

Problem setup:
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What is the best classifier we can obtain?

w.r.t. accuracy
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To measure the accuracy, we define loss function
ℓ(#, %), ' ↦ ℓ %, ' # ∈ ℝ.

For example, 0-1 loss: 1 % ≠ sign(' # ) .

The best classifier should be the one that has the smallest
loss on all the possible data from the domain.
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!",$%& ' = )(+,,)~" / 0 ≠ sign(' 6 )

'7(8) = argmax= >(0 = ?|6 = 8) .

= B> 6 = 8, 0 = ? / ? ≠ sign(' 8 ) C8C?

= 1 −B> 6 = 8, 0 = ? / ? = sign(' 8 ) C8C?.

Theoretically,
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Expected risk, Bayes classifier

The expected risk:
!",$%& ' = )(+,,)~" / 0 ≠ sign(' 6 ) .

Bayes risk:!",$%&∗ = inf
:
!",$%& ' .

Restricted Bayes risk: '∗ = inf
:∈<

!",$%& ' .

The Bayes decision rule (Bayes classifier):
'= = arg inf

:
!",$%& ' .
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We approximate the expected risk ! " via the
empirical risk: #!$,ℓ " = (

)∑+,(
) ℓ -+, " .+ .

We minimize the empirical risk to find a predictor:
") = arg min

6∈8
#!$,ℓ " .

Empirically,

In reality, we can only observe a sample of data
9 = .(, -( , … , .), -) ∼ <) .
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Statistically consistent classifier [1,2]:

With high probability, as ! ⟶ ∞,
we have:$%,ℓ () ⟶ $%,ℓ (∗ .

[1] Mohri et al. Foundations of machine learning. MIT press, 2018.
[2] Devroye, et al. A probabilistic theory of pattern recognition. Vol. 31. Springer Science & Business Media, 2013.
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Aim:

Designing algorithms whose outputs will approach
!"($) = argmax, -(. = /|1 = $).
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What is the best classifier we can learn?

Noisy sample: !" = $%, '(% , … , $*, '(* ∼ ,-*,
where '( stands for noisy labels and ,- the noisy distribution.

Learning with noisy labels

Can we approach ./ $ = argmax5 6 7 = ( 8 = $ ?



14

Learning with noisy labels
One category: extracting confident examples or

correct labels.

Another category: label-noise learning [5].

SOTA, e.g., Co-teaching [3]; Joint Optim [4].

Methodology, i.e., statistically consistent algorithms.

[3] Han, Bo, et al. "Co-teaching: Robust training of deep neural networks with extremely noisy labels." NeurIPS 2018.
[4] Tanaka, Daiki, et al. "Joint optimization framework for learning with noisy labels." CVPR 2018.

[5] Xia, Xiaobo, et al. “Are anchor points really indispensable in label-noise learning?.” NeurIPS 2019.
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Why called “label-noise learning”?
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Model label noise

Transition matrix:
!( #$ = 1|$ = 1, )) ⋯ !( #$ = 1|$ = ,, ))

⋮ ⋱ ⋮
!( #$ = ,|$ = 1, )) ⋯ !( #$ = ,|$ = ,, ))

.
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Transition matrix

!( #$ = 1|()
⋮

!( #$ = +|()
=

!( #$ = 1|$ = 1, () ⋯ !( #$ = 1|$ = +, ()
⋮ ⋱ ⋮

!( #$ = +|$ = 1, () ⋯ !( #$ = +|$ = +, ()

!($ = 1|()
⋮

!($ = +|()

/0(()



19

Why called “label-noise learning”?

• Label-noise learning [5]
• Noisy-label learning
• Learning with noisy labels [6]

[5] Xia, Xiaobo, et al. “Are anchor points really indispensable in label-noise learning?.” NeurIPS 2019.
[6] Natarajan, Nagarajan, et al. “Learning with noisy labels.” NeurIPS 2013.
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Model Label Noise
(1)Random Classification Noise (RCN) [7]:
!"#,# % = ' "( (, % =' "( ( = !, ∀ ( ≠ "(.

(2)Class-conditional Noise (CCN) [6]:
!"#,# % = ' "( (, % =' "( ( .

(3) Instance-dependent Noise (IDN) [8,9]:
!"#,# % = ' "( (, % .

[7] Angluin, Dana, and Philip Laird. “Learning from noisy examples.” Machine Learning 2.4: 343-370, 1988.
[8] Cheng, Jiacheng, et al. “Learning with bounded instance and label-dependent label noise.” ICML 2020.

[9] Berthon, Antonin, et al. "Confidence scores make instance-dependent label-noise learning possible." ICML, 2021
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Random Classification Noise (RCN)
Theorem 1. The losses satisfying the following symmetric criterion is
robust to RCN:

! " # ,+1 + ! " # ,−1 = ),
where ) is a constant. That is

argmin0 12,3 " = arg min0 142,3 " .

Because: 142,3 " = 6 7, 89 ∼42[!(" # , 8=)] = 1 − 2A 12,3 " + A).

[10] Du Plessis, Marthinus C. et al. “Analysis of learning from positive and unlabeled data.” NeurIPS 2014
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Random Classification Noise (RCN)
The symmetric losses that are robust to RCN:

(1) 0-1 Loss: ! " # , % = '(sign(" # ) ≠ %);

(2) Unhinged Loss: ! " # , % = 1 − %" # ;

(3) Sigmoid Loss: ! " # , % = 2
23456(7) ;

(4) Ramp Loss: ! " # , % = 2
8max(0,min(2,1 − %"(#)))…
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Class-conditional Noise (CCN)

The loss correction method:
Modify ℓ to be "ℓ such that

# $, "& ∼() "ℓ * + , ", = # $,& ∼& ℓ * + , ,
By exploiting the model of label noise:

.( ", = 1|2)
⋮

.( ", = 5|2)
=

.( ", = 1|, = 1) ⋯ .( ", = 1|, = 5)
⋮ ⋱ ⋮

.( ", = 5|, = 1) ⋯ .( ", = 5|, = 5)

.(, = 1|2)
⋮

.(, = 5|2)
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Unbiased estimator （binary classification） [6]:

Thus, ! ", $% ∼'( $ℓ*+ , - , $. = ! ",% ∼( ℓ , - , .

$ℓ*+ ,(1), 3 = 1 − 67,87 ℓ , 1 , 3 − 687,7ℓ , 1 ,−3
1 − 689,:9 − 6:9,89

The idea is that !;7|= $ℓ*+ ,(1), ;3 = ℓ , 1 , 3 .

[6] Natarajan, Nagarajan, et al. “Learning with noisy labels.” NeurIPS 2013.

>( $. = 1|1)
⋮

>( $. = @|1)
=

>( $. = 1|. = 1) ⋯ >( $. = 1|. = @)
⋮ ⋱ ⋮

>( $. = @|. = 1) ⋯ >( $. = @|. = @)

>(. = 1|1)
⋮

>(. = @|1)
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Importance reweighting [11]:

Thus, ! ", $% ∼'( $ℓ*+ , - , $. = ! ",% ∼( ℓ , - , .

$ℓ*+ ,(1), 3 =
4（1, 3）
$4（1, 3）

ℓ ,(1), 3 =
56(1)

785 6 (1)
ℓ ,(1), 3 ,

where , 1 = arg max
>∈{A,…,C}

5>(1).

[11] Liu, Tongliang, and Dacheng Tao. "Classification with noisy labels by importance reweighting." IEEE Transactions on pattern 
analysis and machine intelligence 38.3 (2015): 447-461..

4( $. = 1|1)
⋮

4( $. = H|1)
=

4( $. = 1|. = 1) ⋯ 4( $. = 1|. = H)
⋮ ⋱ ⋮

4( $. = H|. = 1) ⋯ 4( $. = H|. = H)

4(. = 1|1)
⋮

4(. = H|1)
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Forward correction [12]:

Cross-entropy
Loss

Neural Network

!"
#(%)

max*+,,⋯,/ 0*
∗ (%)

2(%)

softmax

3( 45|%)≈3(5|%)≈

Datawith
noisy

labels

[12] Patrini, Giorgio, et al. "Making deep neural networks robust to label noise: A loss correction approach." CVPR 2017.

3( 45 = 1|:)
⋮

3( 45 = <|:)
=

3( 45 = 1|5 = 1) ⋯ 3( 45 = 1|5 = <)
⋮ ⋱ ⋮

3( 45 = <|5 = 1) ⋯ 3( 45 = <|5 = <)

3(5 = 1|:)
⋮

3(5 = <|:)
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A summary of consistent algorithms
Ø Many methods for dealing with noisy labels

Loss correction, Sample selection, label correction, …

Ø Model label noise
Random Classification Noise (RCN)
Class-conditional Noise (CCN)
Instance-dependent Noise (IDN)

Ø Symmetric loss functions are robust to RCN
A loss function is symmetric if ∑" ℓ(% & , () = +

Ø Three loss correction methods
Unbiased estimator, importance reweighting, forward correction
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How to estimate the transition
matrix

Given the noisy data
!" = $%, '(% , … , $*, '(* ∼ ,-.

How to estimate the transition matrix .?
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Anchor point assumption [11]

! "# = 1 & = (1 − )*+,-+ − )-+,*+)!(# = 1|&) + )-+,*+

! "# = −1 & = (1 − )*+,-+ − )-+,*+)!(# = −1|&) + )*+,-+

We designed the following estimator:
)-1,*1 = min&∈6 ! "# = 7 & .

[11] Liu, Tongliang, and Dacheng Tao. "Classification with noisy labels by importance reweighting." IEEE Transactions on pattern 
analysis and machine intelligence 38.3 (2015): 447-461..

Rearrange the relationship among the noisy class posterior, the clean class
posterior, and the transition matrix, we have
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If ! " = $ %& = 1, then %& is called the anchor point for the
$-th class.

Definition

[11] Liu, Tongliang, and Dacheng Tao. "Classification with noisy labels by importance reweighting." IEEE Transactions on pattern 
analysis and machine intelligence 38.3 (2015): 447-461..
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Anchor point assumption

!( #$ = 1|( = )*)
⋮

!( #$ = -|( = )*)
=

!( #$ = 1|$ = 1) ⋯ !( #$ = 1|$ = -)
⋮ ⋱ ⋮

!( #$ = -|$ = 1) ⋯ !( #$ = -|$ = -)

1
0
⋮
0

!( #$ = 1|()
⋮

!( #$ = -|()
=

!( #$ = 1|$ = 1) ⋯ !( #$ = 1|$ = -)
⋮ ⋱ ⋮

!( #$ = -|$ = 1) ⋯ !( #$ = -|$ = -)

!($ = 1|()
⋮

!($ = -|()

1

!( #$ = 1|( = )2)
⋮

!( #$ = -|( = )2)
=

!( #$ = 1|$ = 3)
⋮

!( #$ = -|$ = 3)

[11] Liu, Tongliang, and Dacheng Tao. "Classification with noisy labels by importance reweighting." IEEE Transactions on pattern 
analysis and machine intelligence 38.3 (2015): 447-461..
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How to find anchor points

Binary classification, find the anchor points:
!" = argm()

!∈+
, -. = / ! .

Multi-classification, approximate the anchor points for
multi-class learning:

!" ≈ argm()
!∈+

, -. = / ! .

[11] Liu, Tongliang, and Dacheng Tao. "Classification with noisy labels by importance reweighting." IEEE Transactions on pattern 
analysis and machine intelligence 38.3 (2015): 447-461..
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T estimator vs Dual-T estimator [13]

T estimator:
!( #$ = 1|( = )*)

⋮
!( #$ = -|( = )*)

=
!( #$ = 1|$ = .)

⋮
!( #$ = -|$ = .)

Estimation error: ! #$ = / ) − 1! #$ = / ) = Δ3.

[13] Yao Y, et al. Dual T: Reducing estimation error for transition matrix in label-noise learning. NeurIPS 2020.



36

[13] Yao Y, et al. Dual T: Reducing estimation error for transition matrix in label-noise learning. NeurIPS 2020.
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Dual-T estimator:

!"# = % &' = ( ' = ) =*
+,-

.
%( &' = (|'1 = 2, ' = )) %('1 = 2|' = ))

=*
+,-

.
!+#♠ ' = ) !"+♣.

T estimator vs Dual-T estimator

[13] Yao Y, et al. Dual T: Reducing estimation error for transition matrix in label-noise learning. NeurIPS 2020.

We let % '1 = 6 7 = 8% &' = 6|7 , where '1 is a variable
for intermediate class.
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Estimation error of transition matrix

[13] Yao Y, et al. Dual T: Reducing estimation error for transition matrix in label-noise learning. NeurIPS 2020.
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Sufficiently scattered assumption
vs anchor point assumption

[14] Li, Xuefeng, et al. "Provably end-to-end label-noise learning without anchor points." ICML 2021.

where !(#$|&) =
!( )* = 1|&)

⋮
!( )* = -|&)

=
!( )* = 1|* = 1) ⋯ !( )* = 1|* = -)

⋮ ⋱ ⋮
!( )* = -|* = 1) ⋯ !( )* = -|* = -)

!(* = 1|&)
⋮

!(* = -|&)

0



40[14] Li, Xuefeng, et al. "Provably end-to-end label-noise learning without anchor points." ICML 2021.

min$%∈'
vol ( $,)

s. t. $,ℎ2 = 4(56|8)

VolMinNet [14]
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T revision [15]

then, ! " # = % = &' ()! *" # = % =
[0.15; 0.28; 0.25; 0.3; 0.02].

! " # = % = 5&' ()! *" # = %
= [0.1587; 0.2697; 0.2796; 0.2593; 0.0325].

If ! *" # = % = [0.141; 0.189; 0.239; 0.281; 0.15],

[15] Xia X, et al. Are Anchor Points Really Indispensable in Label-Noise Learning? NeurIPS. 2019
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Weighted loss = "
#∑%&"

' ()*+(-+)
/0( )*+(-+)

1 2 -% , 45% ,

where 2 - = argmax%∈ ",…,= (% - .

T revision [15]

[15] Xia X, et al. Are Anchor Points Really Indispensable in Label-Noise Learning? NeurIPS. 2019
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A summary of estimating transition matrix
Ø How to estimate the transition matrix given only noisy data?

Method: T estimator (by exploiting anchor points)

Ø Large estimation error of the noisy class posterior
Method: Dual-T estimator (by decomposing the matrix)

Ø How about if there is no anchor points?
Method: VolMinNet (using the sufficiently scattered assumption)

Ø How to deal with poorly estimated transition matrix
Method: T revision (revising the matrix by using a slack variable)
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Conclusion and future directions
Ø Conclusion
• Statistically consistent algorithms: the classifier learned by using noisy data

will converge to the optimal one defined by using clean data
• Statistically consistent algorithms are robust to the data distribution and

label noise type
• Modelling the label noise and estimating the transition matrix are cores in

label-noise learning
Ø Future directions
• Design effectively loss correction methods for deep learning
• How to address the finite/small sample problem
• How to use a small set of clean data to better estimate the transition matrix
• How to model and estimate the instance-dependent label noise (IDN)


