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1. What is Automated Machine Learning (AutoML)?
 What is Machine Learning?
* What is Automated Machine Learning (AutoML)?
 How to Use AutoML Techniques

2. Sample Selection for Learning with Noisy Labels (LNL)
3. Future Works & Summary



What is Machine Learning (ML)?

COVID Simulation
Petroleum Exploration
Drug Discovery

Search Engine
Recommender Systems
Loss Assessment

T @ Security Monitoring
» . Bio-payment
e Flow Statistics

(7)) ' g &!-
5 = PFEs iig ﬁ |-ﬂa &
= mﬂWﬂﬁw“’
S 2
Q
Q
< Better Performance
Image Classification Face Recognition Drug Design
Predict the class of the object Who is the person Learn to make decisions H |ghe r Efﬁciency
S Structure Samples
= A A i . .
c ( _ i J \, (iterative)
T . min, F(x;D) | ——> Prediction Accuracy
) \ } ! optimization
Parameters

[1]. Machine Learning, Tom Mitchell, McGraw Hill, 1997.
[2]. Rt 2. 412853, Jba: AR, 20166
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ML = Data + Knowledge ACML

Image Classification

Q'hﬂ%ﬁizg Design a hypothesis (function) f to perform the learning task
% a5 B aora
Optimization @ . | Better Performance ——— Generalizaton ——— What kind of f should we use?
b b | (more important)
Hypothesis filCNN o ..
e
I @ ® o o | ! |
N e kHigher Efficiency/—b Optimization ——— How can we find such f?
Generalization @ i
Accuracy Ta rget Concept |Ssue

PAC-Learning (pefinition 2.3 in [1]): What kind of problems can be solved in polynomial time

Not everything

No Free Lunch Theorem (appendix B [2]): NO single algorithm can be good on all problems
can be learnt

[1]. M. Mohri, A. Rostamizadeh, A. Talwalkar. Foundations of machine learning. 2018
[2]. O. Bousquet, et.al. Introduction to Statistical Learning Theory. 2016 4



How to use ML Well?

Prior Knowledge Optimization

Hypothesis

Model

Generalization Performance

The Advancement of Learning
- An iteration between theory and practice

- A feedback loop

&) HFLfBTIRR

-_-".:'-'- Department of Electro . ‘Tsinghua University

o on  ACML

/ éH&HZFE

Generalization: What kind of f should we use?

SGD v.s. Adagrad!]

Optimization: How can we find such f?

Prior knowledge

.

“All models are wrong, but some are useful”!2!

Better understanding of prior knowledge — Better hypothesis — Better generalization performance

[1]. Image Source: A. Amini et al. “Spatial Uncertainty Sampling for End-to-End Control”. NeurlPS Bayesian Deep Learning 2018

[2] G. Box, Science and statistics, JASA 1976
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1. What is Automated Machine Learning (AutoML)?
* What is Machine Learning?
 What is Automated Machine Learning (AutoML)?
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Simple Example — Tune hyper-parameter

Most Accurate Model
High Bias based on primary test set Low Bias
Bi-level optimization Hyper-parameter Low Variance High Variance
Underfitting Overfitting
Most
" " . Generalizabld
max h(xj;w ) s.t. w* = min flx;w) w4
A j w i g
]
| | | ||z
| | 5
L . u
Validation Training
Performance objective I
Model Complexity
* Large A leads to sparse w* : ~
] ] ® P e .® o * .® o *
* Grid search: enumerating A € {1,2,4,8, ... } e s s TS Yo o
."o..o. .'.’0..0. .'.o'.o.
‘% B ‘e ° ‘e «

[1]. Image source: Artificial Intelligence and Machine Learning in
Pathology: The Present Landscape of Supervised Methods.
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Mach. Learn — Error decomposition ACML

optimal: fAL

Best in H: h

empiri

Image is from Y. Wang, et. al. Generalizing from a Few Examples: A Survey on Few-Shot Learning. CSUR 2020

approximation error

=_estimation error

optimization error

Total error in machine learning
* Approximation error
— Which classifier to be used
— What are their hyper-parameters

— Distribution changes
Reduce

Estimation error <
— Finite samples muinz.f(xi; w) +®|W||1
l

— Regularization hyper-parameter

Optimization error
— Which algorithm to be used

— How to tune its step-size



(o) HF1fmTTiRR

_-_-,r
_._.y Department of Electronic Engincering. Tsinghua University

Look Inside Error Decomposition ACML

optimal: fAL

Automatically find h* by bi-level optimization

mfleh(xj;w*) s. t. W*=mvinz_f(xi;w)+/1llwlll
\ ’ ) W )

approximation error

| |
L L -\ estimation error
Validation Training
Performance objective empirical best: hy

optimization

How to further improve the performance in an automatic error

manner (i.e., reduce the approximation error)?

~
H start

* Feature can be weak - Automatic feature engineering

* Linear predictor can be too restrictive = Neural architecture search

e Grid search can be S|O\{—> Search in a supernet
uto




Figure is from Q. Yao et.al. Taking Human out of Learning Applications: A Survey on Automated Machine Learning. arXiv 2018

scalar scalar

What is AutoML — Practical Vlewpo

How to represent the
learning problem? [21][+7]

F m gL é &D é (%;
ruman Prior Knowledgé ,
Experts What type of functions (hypothesis space) should we use*
ind the
/' target function? GD v.s. Adagrad

Problem definition Feature Model Optimization Evaluation Deployment
/ o 3 //' oy \ Q E,.ce\\et\k Qg m ‘i
¢ . ” . N eood g = 4 -
) o - 2 mmp S SN =) © WO
4 A podt =
~ T & Oeo
Data collection Feature engineering Model selection Algorithmselection

Parameterize in the usage and design of machine learning

As a consequence < Human participations can be naturally replaced by computation power
* total error of machine learning can be reduced (generalization can be improved) 10



Figure 4.1 & 4.2. M. Mohri, A. Rostamizadeh, A. Talwalkar. Foundations of machine learning. 2018
[1]. P. Battaglia. et.al. Relational inductive biases, deep learning, and graph networks. arXiv 2018.
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What is AutoML — Generalization VIeWpOIntA@ML

Parameterized the prior knowledge of learning methods, e.g.,

o Hypothesis space
e minimize the total error

parameterized by y

* reduce parameter numbers

Perform efficient search in the designed (new) space

* combinatorial generalize new models from existing ones!t!

Classica >

h hBayes
ayves
Bay
O

AutoML

Parameterize in the usage and design of machine learning

As a consequence ¢ Human participations can be naturally replaced by computation power
e total error of machine learning can be reduced (generalization can be improved) 11



Why We need AutoML?
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Rising revenues worldwide in artificial intelligence
Revenue in USD bn
Top Three Challenges to the Adoption of Al by Organizations

40
35
10 Lack of Necessary Staff Skills 54%
25
20 Defining Our Al Strategy 37%
15
10

5 Identifying Use Cases for Al 35%

o]

0% 30% 60%
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Aaga
Source: Statista, Credit Suisse
Investment in Al industry Practical needs

Hype Cycle for Data Science and Machine Learning, m

— Explainable Al
[ MLOps
I
Data Laballr?q?“ﬁd;‘m:g:; :er\clces \". - % — fugmentsd EmML
-Relate: arvices | 4 /o ML
Larga- Scale F'wlﬂ-nad . _ ee
Lenuage Medel — Disep Neural Natwerks (Deep L
ﬁuﬂn In’aihgarm = Disisp Newral Nebworks (Deep Learring
Prascriptive Analytics
Synthedic Data .
J \
Transfer Leamning @ @ Graph Analtics

I \
@ J \
£ Refarcerent Leaming —, | Q Advanced Videsfimage Analytics _— O
= Kubeflow —, 1 0
" "
| Adaptive ML — Q Event Stream Processing qDI L L Moteboaks
£ Federated Maching Leamng § "\ Apache Spark
- Differential Privacy @ \ - |

Cerarative Adversarial I 3\ Ve |- TexAnalytics
Networks [ “ _ — Predictive Analytics
Sell-Supendsad Leaming g
Quantum M &
#
s of July 2020
time
Plateau will b hed
o o] L] Fiy @
Source: Garin
Source. Gartne About 5 years to be mature

Technical trends

* Industry — reduce the expense, increase usage coverage — huge market value 1!

* Academy — understanding data science on a higher level — great intelligence value (23]

[1]. Gartner: https://www.forbes.com/sites/janakirammsv/2020/03/02/key-takeaways-from-the-gartner-magic-quadrant-for-ai-developer-services/#a95b99ee3e5e

[2].Y. Bengio: From System 1 Deep Learning to System 2 Deep Learning | NeurlPS 2019
[3]. F Hutter, L Kotthoff, ] Vanschoren. Automated machine learning: methods, systems, challenges. Book 2019

17


http://www.forbes.com/sites/janakirammsv/2020/03/02/key-takeaways-from-the-gartner-magic-quadrant-for-ai-developer-services/#a95b99ee3e5e
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Related Areas ACML
Sub-areas Related areas
* Neural architecture search * Bi-level / Derivative-free optimization
* Hyper-parameter search * Focus more on algorithm design
e Automated feature engineering * AutoML objective is one kind of objective where these

_ _ algorithms can be applied
* Algorithms selection _
* Meta-learning

* Model selection
* Focus on parameterize task distributions

* Another kind of bi-level objective

* Do not use validation set to update hyper-parameters
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 How to Use AutoML Techniques
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How to use AutoML ACML

1. Define an AutoML problem

* Derive a search space from insights in specific domains

* Search objective is usually validation performance

* Search constraint is usually resource budgets

* Training objective usually comes from classical learning models

1. Search
Space

mln(M(F(W /1) Dval)}f Search Objective

— /165

Bi-level

optimization [H‘lAl’n L(F(W; /1)’ Dtra)}*
4. Training t { W
” [ G(A) <C }7 Search Constraints

2. Design or select proper search algorithm

Objective

* Reduce model training cost (time to get w*)

15



S BE4+LBFIREA
@. “F = =21 [N
“” Department of Electronic Engincering. Tsinghua University

What is AutoML - Short Summary ACML

* Exploring prior knowledge is important in machine learning
* Cost time and critical to generalization performance

* AutoML attempts to parameterize low-level prior knowledge
 Human participations can be naturally replaced by computation power
» total error can be reduced (generalization can be improved)

* To use well AutoML techniques
* Exploring high-level domain knowledge when defining the AutoML problem
* Reducing model training cost when design search algorithm
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1. What is Automated Machine Learning (AutoML)?

2. Sample Selection for Learning with Noisy Labels (LNL)

* What are Small-loss Samples
e Co-teaching, its Variants and Limitations
* Design Sample Selection Criterion by AutoML

3. Future Works & Summary

17
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Success of Deep Networks ACML

oo
-
4
% -
i 14
i
e s 2

110 —
100 - ap - -
L] I i _BRl
N NASNET-A(8) AdvProp [EfficientMet-B3)
':_:' Reshet-152(a0n)
o NGG-19
-]
[ -
[ ] FU
< . seg(Teat - 7 accurate models
n Simple Grow deeper and larger
(0
O network
'_
a0

2012 2014 2014 2018 2020

Other models Maodels with highest Top 5 Accuracy

Big & High-quality data is the fuel

Figure is from https://paperswithcode.com/sota/image-classification-on-imagenet?metric=Top%205%20Accuracy 18
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What is Special about Deep Networks? ACML.

(MNIST, Pair-45%)

Noisy labels

0.80 -8
Standard
CNN g
s
(]
()
=T
7
L (1,400
|_
.20
[Han, etal. 2018]
0,000 - ) ! ! 5
0 50 100 150 200

Epoch
Test accuracy v.s. steps

Memorization effect: Learning easy patterns first, then (totally) over-fit noisy

training data. Independent with network types and structures.
19

C. Zhang et.al. Understanding deep learning requires rethinking generalization. ICLR 2017
D Arpit et.al. A closer look at memorization in deep networks. NIPS 2017
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1. What is Automated Machine Learning (AutoML)?

2. Sample Selection for Learning with Noisy Labels (LNL)

 What are Small-loss Samples
e Co-teaching, its Variants and Limitations
* Design Sample Selection Criterion by AutoML

3. Future Works & Summary

21
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Co-teaching — Core idea ACML

Exchange small loss in each mini-batch for two classifiers

M-Net Decoupling Co-teaching

N . - F____

Mini-batch 1 I 0 | ' o o o o

I
. . I
Mini-batch 2 : o

I I=
Mini-batch 3 | 0 y o o 1 o o
| 7 N\

__N

-_—_—_—_—‘

B. Han et.al. Co-teaching: Robust training deep neural networks with extremely. NeurlPS 2018
22



Co-teaching — Implementations

Algorithm 1 Co-teaching Paradigm.

1: Input w; and w,, learning rate 7, fixed 7, epoch T}, and T},,,, iteration Ny,
forT =1,2,...,Tpax do

end

end

2: Shuffle training set D; //noisy dataset

for N =1,..., Npax do

3: Draw mini-batch D from D:;

4: Sample D; = arg minp £(f, D, R(T)); /Isample R(T')% small-loss instances
5: Sample D, = arg ming £(g. D, R(T)); /Isample R(T')% small-loss instances
/lupdate w; by D,;

exchange small loss sample;;llpdate wy by Dy
g »

7: Update w, = w,

8: Update R(T) =1 —min { £7,7 5

9: Output w and w,

Change the procedures in SGD algorithm

‘o AFrimFIRE

Department of Electronic Engincering. Tsinghua University
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ACML
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Co-teaching — Selection rule

X SN
mlen - n
il
]

Algorithm 1 Co-teaching Paradigm.

1: Input w; and w,, learning rate 7, fixed 7, epoch T}, and T},,,, iteration Ny, ;

forT =1,2,...,Thax do

2: Shuffle training set D;

for N =1,..., Nmax do

3: Draw mini-batch D from D;

6: Update wy = wy —nV f(Dy);
7: Update w, = w, — nVg(Dy);

end
8: Update R(T)
end

9: Output wy and w,

4: Sample Dy = argming ¢(f, D, R(T));
5: Sample D, = arg ming £(g, D, R(T));

How many samples
to be kept

//sample R(T)% sm
/Isample R(T")% sm

/I
/N

//noisy dataset

i o

T R
| g
! o
e ;
o

nE
=i

S,

%128 FIRA
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0.7 1
06 4 — Standard (without R(t})
|| Rt} schedule 1

= R(t) schedule 2
| = Ri(t) schedule 3

= Ri(t) schedule 5

Rt} schedule 4

Rt} schedule &

0 X 50 75 100
Epoch £

125 150 175 200

R(t) =1—7-min ((¢/t), 1),

24



Co-teaching — Selection rule

How many samples to be kept?

— ResNet-50

* During the initial phase when the learning curve rises, the deep - ﬂ P sy
| Sl OV Hogel 2
Small CNN Model 3

network is plastic and can learn easy patterns. One can allow a

Test accuracy (%)
o
=3

larger R(t) as there is little risk of memorization.

 As training proceeds and the learning curve has peaked, the 0 3 s 5 W0 U5 150 Vs X0

Epocht

network starts to memorize and overfit the noisy samples. Hence,

R(t) should then decrease. R(t) =1 —7-min ((t/tx)%,1),

25
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Experiments — R(T)

c=0.9 c=1 c=2

Pair-45% T = 75.56%+0.33% 87.59%40.26% 87.549%+0.23%
T =10 88.43% +0.25% 87.56%+0.12% 87.939%4+0.21%

T, =15 88.37 % +0.09 % 87.29%+0.15% 88.09% +0.17 %

Symmetry-50% 1. =5 91.75%+0.13% 91.75%+0.12% 92.20% +0.14%
T, =10 91.70%+0.21% 91.55%+0.08% 91.27%+0.13%

T. =15 91.749%+0.14% 01.209%+0.11% 01.38%+0.08%

Symmetry-20% T = 07.05%+0.06% 07.10%40.06% 97.41%=+0.08%
T, =10 07.33%+0.05% 06.97%40.07% 97.48% +0.08 %

T, =15 07.41%=+0.06% 07.25%40.09% 97.51% +0.05%

* R(T) and 7 can influence the performance

* However, their sensitive is not high, and they can be easily set

* |n previous experiments, we setc=1and T}, = 10



oYy Py
£ A, A S
Gl HE412BFIRE
FEG as ]
PR . i ~Z = =P [
e LAY v, o A0 p— . . . . e . .
'“-1 g M Depantment of Electronic Engincering. Tsinghua University
i ety

Co-teaching — Variants ACML

1. Utilize unlabeled data using semi-supervised learning
e Lietal., ICLR 2020, Liu et al., NeurIPS 2020.

2. Stronger rule to select small-loss samples
* Yuetal., ICML 2019, Arazo et al., ICML 2019, Y. Kim et al. CVPR 2019

3. Learn soft instead of hard weights for samples
e J. Shu et at. NeurlPS 2019, J. Lu et al. ICML 2020
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Outline ACML

1. What is Automated Machine Learning (AutoML)?

2. Sample Selection for Learning with Noisy Labels (LNL)

 What are Small-loss Samples
e Co-teaching, its Variants and Limitations
e Design Sample Selection Criterion by AutoML

3. Future Works & Summary

28
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Search to Exploit Memorization Effect ACML

* Key component to exploit memorization effect: R(t)
e controls the percentage of small-loss samples

* Hard to set an appropriate R(t)
* memorization effect is complex
* depends on datasets, noise type, noise ratio, architecture, ...

* We are encouraged to apply AutoML to this problem

e “search” an appropriate R(t)
How?

Q. Yao et.al. Searching to Exploit Memorization Effect in Learning from Corrupted Labels. ICML 2020

Some materials are still under construction of the journal version.

https://github.com/AutoML-Research/S2E



https://github.com/AutoML-Research/S2E

Message on using AutoML

1. Define an AutoML problem from insights in specific domains

2. Design a search algorithm reducing model training cost

1. Search
Space

Bi-level mln(M (F(w*; 1), Dval)} Search-Objective

optimization ., eS|

4. Training

Objective { [H}Al’n L(F (W; /D; Dtra)}i
s. t. -

[ GA) <C }—Sea;eh@enmm

30



Revisit Memorization Effect

Test accuracy (%)

%128 FITIER
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CIFAR-10 + 20% symmetric
CIFAR-10 + 50% symmetric
CIFAR-10 + 45% pairflip
CIFAR-100 + 20% symmetric
CIFAR-100 + 50% symmetric
CIFAR-100 + 45% pairflip
MNIST + 20% symmetric
MNIST + 50% symmetric
MNIST + 45% pairflip

00 125 150 175 200

Epoch t

0 5 s 7

(b) Different data sets (training accuracy). (¢) Different data sets (testing accuracy).

= Baseline
40 = Random R(t) 1 100
== Random R(t) 2
_ = Random R(t) 3 80
g — RandomR(t)4 | 3 e
> —— Random R(t) 5 <4 0 = CIFAR-10 + 20% symmetric
g —— Co-teaching 8 4 CIFAR-10 + 50% symmetric
g 2 —— Searched g —— CIFAR-10 + 45% pairflip
o ® 40 ~ CIFAR-100 + 20% symmetric
§ :_:': ~— CIFAR-100 + 50% symmetric
10 20 = CIFAR-100 + 45% pairflip
MNIST + 20% symmetric
= MNIST + 50% symmetric
0 0 MNIST + 45% pairflip
0 25 50 s 100 125 150 175 200 0 5 50 1:] 100 125 150 175 200
Epoch t Epocht
(a) Impact of R(t).
50 = ResNet-50 — SGD
~— DenseNet-169 50 RMSProp
40 = MobileNetV2 - Adam
o ~ Small CNN Model 1 _ 4
R ~ Small CNN Model 2 *
= —— Small CNN Model 3 | >
e ! € 30
= 2
S 20 8
bo &
t o 20
: - : vam
10
0
0 P 50 IE) 100 125 150 175 200 0 200 400 600 800 1000
Epoch t Epoch t

(d) Different architectures.

(e) Different optimizers.

Test accuracy (%)

10

Learning rate 0.001
Learning rate 0.0005
Learning rate 0.0001
Batch size 64

Batch size 128
Batch size 256

T

600
Epoch t

800 1000

(f) Different optimizer settings.

Figure 1. Training and testing accuracies on CIFAR-10, CIFAR-100, and MNIST using various architectures, optimizers, and optimizer
settings. The detailed setup is in Appendix A.3.

31



Derive a Search Space

* During the initial phase when the learning curve rises, the deep network is plastic and can learn
easy patterns from the data. In this phase, one can allow a larger R(#) as there is little risk of
memorization. Hence, at time £ = (), we can set 2(0) = 1 and the entire noisy data set is used.

* As training proceeds and the learning curve has peaked, the network starts to memorize and overfit
the noisy samples. Hence, R(t) should then decrease.

* Finally, as the network gets less plastic and in case R(f) drops too much at the beginning, it may
be useful to allow R(#) to slowly increase so as to enable learning some complex patterns.

Table 1: The four basis functions used to define
the search space in the experiments. Here, a;’s

are the hyperparameters.

filt:a) et 4 az ()™
falti@) | emo2 4 ff*:i%
fa(t; a) e + as(4)%
fa(t:a) W +u;;%

10 1 mmm Jarget
Basis function 1

~—— Basis function 2
0.8 —— Basis function 3

Basic function 4
—— Combined

06 4

04 1

02 A

0 5 s, 75 100 125 150 175 200
Figure 4: Plots of the basis functions in Table 1
An example R(-) to be learned is shown in blue.

7~~~
ACML
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Define an AutoML Problem ACML

Bi-level objective
0 = arg Irgll J(8), s.t.w(Rz) = argming Ly(w, Ry,
where
Search objective: 7(0) = E,p, (z) [ Lval(W(Ra) / Lya(w(Rz))pe(x) de,
* R(t) is complexly coupled with training process gradient w.r.t. R(t) is hard to obtain

« Stochastic relaxation is used gradient is taken w.r.t 6 instead of R(t)

Search space: R(t) = Z; a; - fH(t;8) : {a, {,Si}} €S,

* R(t) is derived based on memorization effect

33
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(a) CIFAR-10 symmetric 50%. (b) CIFAR-10 pair flipping 45%. (c) CIFAR-100 pair flipping 45%.

under different datasets, noise ratios and noise types, the landscapes of
validation accuracy of these different models are all very complex.
it contains bad local optimums (in the middle of figure), which has much worse

performance than the actual optimal (in the right-down corner)
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Derive a Search Algorithm ACML

The general idea is to introduce Hessian matrix / cubic regularization to solve stochastic bi-level objective

* Faster convergence — reduce the number of updates on 8 — less time on model training

Algorithm 2 Search to Exploit (S2E) algorithm for the

6 = arg HHH J(0), st w(Rg) = argming Le(w, Re), minimization of the relaxed objective 7 in (6).

. Initialize @' = 1 so that pg () is uniform distribution.
cform=1,...,Mdo
fork=1.... K do

|
Gradient V.7 (6 / f(x)Vpe(x)dx §
HH
4: draw hyperparameter = from distribution pgm (x);
5
6
7

€S
Hessian H(0;x) = f(x)(V*logpe(z) + V lugf}gﬂm)?lmgpg(m)T} using @, run Algorithm 1 with R(-) in (4);
end for
: use the A samples in steps 3-6 to approximate
Can be faster than first-order method in AutoML VJ(0™)in (7) and V7 (6™) in Proposition 1;
8 update 8™ by (8);
9: end for
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Experiments — Overall performance

Table 4: Testing accuracy (in %) on CIFAR-10. The term “early” means highest testing accuracy,

and “average” means the averaged performance over the last ten epochs.

noise ‘

symmetric 20%

symmetric 35%

symmetric 50%

‘ early
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Compared methods

(i) MentorNet (Jiang et al., 2018)
(ii) Co-teaching (Han et al., 2018)
(iii) Co-teaching+ (Yu et al., 2019)

(iv) JoCoR (Wei et al., 2020); and
(v) PRL (Liu et al., 2021).

early average early average average
Standard | 59.1840.58 47.12+0.05 | 55.55+0.85 37.86+0.03 | 52.23+1.32 32.75+0.07
MentorNet | 59.7440.88  54.36+0.05 | 55.13+0.47 49.4740.05 | 51.08+1.06 46.98+0.07
Co-teaching | 60.88+1.01 55.06+0.03 | 56.86+0.87 50.95+0.02 | 53.48+0.86 50.24-£0.14
Co-teaching+ | 59.5941.03  57.08+0.06 | 52.68+£1.21 50.43+0.08 | 52.4941.52  50.74+0.11
JoCoR | 56.67+1.25 56.02+0.05 | 53.92+1.96 53.86+0.04 | 50.04+2.29 49.53+0.03
PRL | 60.014£0.70  54.30+0.14 | 57.55+0.79 52.34+0.15 | 53.414£0.56 48.48+0.13
S2E | 59.704£1.04  59.36+0.04 | 54.64+0.81 51.2240.04 | 53.46+1.11 53.06:0.08
S2E (Cubic) | 61.27+1.07 61.09+£0.08 | 57.114£0.74 54.75+0.05 | 54.30+1.21 54.05+0.12

. pairflip 25% pairflip 35% pairflip 45%

noise early average early average early average
Standard | 57.44+122 43.1140.03 | 53.2841.07 37.86+0.03 | 44.01£1.49  33.74+0.06
MentorNet | 54.23+1.27 47.13+0.07 | 48.23+1.55 41.63+0.05 | 37.45+£2.45 34.49+0.07
Co-teaching | 56.44+0.95 49.84+0.05 | 51.11+£0.77 44.66+0.03 | 41.26+0.74 38.11-£0.04
Co-teaching+ | 53.5140.99 51.4640.10 | 47.274+0.29 44.2040.11 | 43.66+1.28 37.89+0.25
JoCoR | 57.3941.04 56.93+0.05 | 51.21+1.28  49.5240.06 | 40.68£1.41 38.10£0.16
PRL | 59.63+0.89 53.56+0.16 | 56.69+0.79 50.8940.11 | 48.43+1.01 43.50+0.15
S2E | 57.2240.64 57.1940.02 | 50.58+0.88  50.4240.05 | 46.354+1.03  46.21+0.05
S2E (Cubic) | 57.8640.52 57.66£0.05 | 54.79+0.31 54.71+£0.05 | 49.624+1.14  49.39+0.11

Combine other techniques with
sample selection.

36



Test Accuracy (%)

Accuracy (%)
T

Te

n»n

Mﬁt BFIIEER

Drepartment of Electronic Engineering. Tsinghua University

”~ N

Experiments — Overall performance ACML

—— Standard MentorNet ~ —— Co-teaching ~—— Co-teachingt+ —— JoCoR PRL —— S52E —— S2E (Cubic]

(CIFAR-10, Symimetey-20%) . (CIFAR-10, Symmetry-35%)

Epocht AR S ; T
(a) eymmetry ﬂlppmg (20%). (b) symmetry flipping (35%).

Epoch t Epoch t

(d) pair flipping (25%). (e) pair flipping (35%).

BN

(CIFAR-10, Symumetey-50%)

Demonstrate the huge
potential of the small loss
criteria that may be

(&5 aymmetiy Hiipping (S0%); overloc?ked by simply using
predefined schedules.

Egoch t

Epoch t

(f) pair flipping (45%).
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Experiments — Searched R(t)

Our searched R(t)

* more flexible
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Figure 12: R(-) obtained by S2E and S2E (Cubic). We also include the R(t) used inMentorNet
(MN), Co-teaching (Co) and Co-teaching+ (Co+) for comparison.
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Experiments — Label precision

Our searched R(t)

* cleaner training set
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(d) pair flipping (25%).
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() pair flipping (45%).

Figure 10: Label precision of MentorNet, Co-teaching, Co-teaching+ and S2E on CIFAR-10.
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Experiments — Search Algorithm

Search algorithm:

* much more efficient

e

- Random

— BO

-~ Hyperband
GD

— NG

- Newton

0

5 10 15 20 25 330 33 40

Number of trained models

(a) symmetry flipping (20%).

Test accuracy (%)

55 1

= Random

B0

= Hyperband
GD

— NG

= Newton

0 5 10 15 20 25 30 35 40

Number of trained models

(b) symmetry flipping (50%).

Test accuracy (%)
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50.0
475
450
425
40.0 = Random
_— B0
375 = Hyperband
GD
350 — NG
- Newton
32 S T T T T T T T T T
0 5 10 15 20 25 30 35 40

Number of trained models

(c) pair flipping (45%).

Figure 6. Search efficiency of S2E and the other search algorithms.
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Experiments — Overall performance (semi)

Table 7: Testing accuracy (in %) on CIFAR-100. The term “early” means highest testing accuracy,
and “average” means the averaged performance over the last ten epochs.

noise ‘

symmetric 20%

symmetric 35%

‘ early

symmetric 50%

‘ early

early average average average
Meta-Weight-Net | 58.92+0.25 57.6740.13 ‘ 50.77+£0.37 39.36+0.13 | 42.54+0.45 29.83+0.09
DivideMix | 63.04+0.48 62.76+0.32 | 61.69+0.69 61.3240.14 | 58.174+0.43  57.9940.30
ELR+ | 61.4840.35 61.0540.15 | 58.71+£0.35 58.05+0.11 | 53.68+0.43 53.2740.26
CDR | 51.69+0.23  42.5140.15 | 47.294035 35.57+0.16 | 41.71+0.79 29.61+0.11
Class2Simi | 53.59+£1.22  51.0440.31 | 50.48+1.03 47.03£0.23 | 45.87+1.15  43.4940.75
S2E (Semi) | 64.08+£0.18  63.96+0.12 ‘ 62.64+0.26 62.25+0.20 | 59.23+0.45 59.084+0.21
S2E (Cubic, semi) | 64.3240.22 64.17+£0.09 | 62.69+0.14 62.38+0.11 | 59.944+0.33  59.75+0.17

Hoise pairflip 25% pairflip 35% pairflip 45%

early average early average early average
Meta-Weight-Net | 48.75+£0.69 44.124+0.16 ‘ 42.00+£0.48 38.76+0.12 | 32.80+0.41 31.104+0.14
DivideMix | 61.554£0.54 61.1640.20 | 53.18+0.33  52.724+0.31 | 38.514+0.37 38.22+40.14
ELR+ | 59.154£0.77 58.83+0.19 | 54.07+0.37 53.8040.14 | 42.98+0.51 42.1440.12
CDR | 45.7620.39  41.3940.20 | 38.94+0.55 35.45+0.21 | 30.6640.63 28.98+0.20
Class2Simi | 46.40+£0.88  42.8240.70 | 39.38+1.29 36.3140.63 | 30.64+1.32  29.7440.57
S2E (Semi) | 61.7940.32 61.3840.15 ‘ 53.2940.15 52.89+0.20 | 39.374+0.27 39.1940.13
S2E (Cubic, semi) | 62.24+0.30 61.77+0.16 | 54.51+0.19 54.15+0.21 | 39.7840.25 39.66+0.13
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S2E (Semi) and S2E (Cubic, semi) with the
(i) Meta-Weight-Net (Shu et al., 2019);
(ii) DivideMix (Li et al., 2020);

(iii) ELR+ (Liu et al., 2020);

(iv) CDR (Xia et al., 2021); and

(v) Class2Simi (Wu et al., 2021).

Take noisy instance as semi-supervised

samples.
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Experiments — Overall performance (semi) ACML

— Reweight —— COR = DivideMix ELR-+ — 52E(Semi) —— E2E (Cubic,52mi)

{CAFAR-LO, Symmetey-20%)

{CAFAR-LO, Symimetey-35%) (CIFAR-L0, Symimety-50% )

S2E (Semi) and S2E (Cubic, semi) with the
(i) Meta-Weight-Net (Shu et al., 2019);

(ii) DivideMix (Li et al., 2020);

. Epoch t ' Epoch © ' Epoch ©

(a) symmetry flipping (20%). (b) symmetry flipping (35%). (c) symmetry flipping (50%). (“') ELR+ (I—iu et aI., 2020);

e ewswe (iv) CDR (Xia et al., 2021); and

{CIFAR-LD, Pais-25%)

wn
e

]

e 4,
O iR

(v) Class2Simi (Wu et al., 2021).
é"”' E E } "J""-."m-'. A hee . . . .
2| B A o Take noisy instance as semi-supervised
‘ | samples.
. E.:oc.nt . . - i : ’ i Euo-;nt i . n B : ; § Euo-;nx . . : B
(d) pair flipping (25%). (e) pair flipping (35%). () pair flipping (45%).

Figure 13: Testing accuracies (mean and standard deviation) on CIFAR-10.
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Sample Selection for NNL — Short Summary  AcmL

* Noisy label learning problem is important

* Small-loss based method is popular and empirical work well
* Co-teaching is an exemplar work with many variants
* Design sample selection rule is hard

 AutoML is a promising way to design sample selection rule
* Good search space relies on memorization effect
* Reduce model training times is important to reduce search cost
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1. What is Automated Machine Learning (AutoML)?
2. Sample Selection for Learning with Noisy Labels (LNL)
3. Future Works & Summary
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Future Works & Summary ACML

AutoML is a meta-approach to

* improve learning performance

* understand domain information at a higher level

Your next work can be on “what else can be searched in NNL”.
* Robust loss functions is an example

Seek more opportunities from other tutor’s slides!

* Take S2E as an example.
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Thanks!
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